Implementasi Algoritma Support Vector Machine (SVM) dan Random Forest Untuk Klasifikasi Penyakit Hipertensi Berdasarkan Data Kesehatan
DOI:
https://doi.org/10.30865/jurikom.v12i4.8744Keywords:
Hypertension, Support Vector Machine, Random Forest, Classification,Abstract
One of the most common non-communicable diseases causing death in Indonesia is hypertension. At one community health center, the prevalence of hypertension is quite high. Based on examination results, more than 1,000 patients are diagnosed with hypertension each year. The issue faced at this health center is the lack of structured data classification for hypertensive and normal patients. The objective of this study is to compare the performance of the Support Vector Machine (SVM) and Random Forest (RF) algorithms in creating a hypertension classification model based on health examination data from the Anggadita Health Center. Data from 2,500 patients was collected and preprocessed, including handling missing values, removing duplicate data, transforming data using label encoding, and dividing the data into training and testing sets. The SVM method applied a Radial Basis Function (RBF) kernel, while the RF consisted of 100 decision trees. Evaluation was conducted using a confusion matrix to calculate accuracy, precision, recall, and F1-score. The results showed that the SVM method achieved an accuracy of 93%, precision of 0.96 (Normal) and 0.90 (Hypertension), and F1-scores of 0.94 and 0.92. Meanwhile, the RF model showed superior performance with an accuracy of 96%, precision of 0.97 (Normal) and 0.95 (Hypertension), and F1-scores of 0.97 and 0.95, respectively. Thus, the Random Forest algorithm performs better in classifying hypertension data and can be implemented as a tool to assist healthcare institutions in managing patient data.
References
S. A. Fani, S. Noviana, G. S. Tunabenany, and S. Aryanti, “Edukasi Pemeriksaan Molekuler pada Penyakit Hipertensi?: Inovasi Watermelon Lemonade sebagai Nutrisi Preventif,” vol. 1, no. 3, pp. 202–211, 2024.
R. P. Pridiptama, W. Wasono, and F. D. . Amijaya, “Perbandingan Algoritma Support Vector Machine dan Na¨?veNa¨?ve Bayes pada Klasifikasi Penyakit Tekanan Darah Tinggi (Studi Kasus: Klinik Polresta Samarinda),” Basis, vol. 3, no. 1, pp. 1–16, 2024.
P. Purwono, P. Dewi, S. K. Wibisono, and B. P. Dewa, “Model Prediksi Otomatis Jenis Penyakit Hipertensi dengan Pemanfaatan Algoritma Machine Learning Artificial Neural Network,” Insect (Informatics Secur. J. Tek. Inform., vol. 7, no. 2, pp. 82–90, 2022.
R. Muhardina, J. Rekayasa, and S. Komputer, “Prediksi Risiko Penyakit Hipertensi Menggunakan Metode Extreme Learning Machine (ELM) [1],” vol. 12, no. 02, 2024.
F. O. Awalullaili, D. Ispriyanti, and T. Widiharih, “Klasifikasi Penyakit Hipertensi Menggunakan Metode Svm Grid Search Dan Svm Genetic Algorithm (Ga),” J. Gaussian, vol. 11, no. 4, pp. 488–498, 2023.
W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” Sistemasi, vol. 10, no. 1, p. 163, 2021.
A. Naïve, B. Classifier, and P. Penyakit, “Analisis klasifikasi menggunakan regresi logistik biner dan algoritma naïve bayes classifier pada penyakit hipertensi 1,2,3,” vol. 13, no. 2007, pp. 319–327, 2024.
K. Abdul Khalim, U. Hayati, and A. Bahtiar, “Perbandingan Prediksi Penyakit Hipertensi Menggunakan Metode Random Forest Dan Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 498–504, 2023.
R. S. Tantika and A. Kudus, “Penggunaan Metode Support Vector Machine Klasifikasi Multiclass pada Data Pasien Penyakit Tiroid,” Bandung Conf. Ser. Stat., vol. 2, no. 2, pp. 159–166, 2022.
A. Ghozali, H. Pratiwi, and S. S. Handajani, “Implementasi Data Mining Menggunakan Metode Random Forest Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes,” Delta J. Ilm. Pendidik. Mat., vol. 11, no. 2, p. 147, 2023.
T. Rohana, E. Nurlaelasari, E. E. Awal, and H. Y. Novita, “Kajian Model Jaringan Syaraf Tiruan Untuk Memprediksi Secara Dini Tingkat Kelulusan Mahasiswa,” Technol. J. Ilm., vol. 15, no. 4, p. 629, 2024.
H. Hikmayanti, A. F. Nurmasruriyah, A. Fauzi, N. Nurjanah, and A. Nur Rani, “Performance Comparison of Support Vector Machine Algorithm and Logistic Regression Algorithm,” Int. J. Artif. Intelegence Res., vol. 7, no. 1, p. 1, 2023.
A. M. Siregar, “Analisis Sentimen Pindah Ibu Kota Negara (IKN) Baru pada Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM),” Fakt. Exacta, vol. 16, no. 3, pp. 170–181, 2023.
K. A. Baihaqi, E. Sediyono, C. Dewi, I. R. Widiasari, and A. Fauzi, “Classification of Mobile Application User Ratings Based on Data from Google Play Store,” E3S Web Conf., vol. 500, pp. 1–8, 2024.
N. F. Sahamony, T. Terttiaavini, and H. Rianto, “Analisis Perbandingan Kinerja Model Machine Learning untuk Memprediksi Risiko Stunting pada Pertumbuhan Anak,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 413–422, 2024.
D. Sudrajat, A. I. Purnamasari, A. R. Dikananda, D. A. Kurnia, and A. Bahtiar, “Klasifikasi Mutu Pembelajaran Hybrid berdasarkan Algoritma C.45, Random Forest dan Naïve Bayes dengan Optimasi Bootsrap Areggating (Bagging) pada masa COVID-19,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 6, p. 2227, 2022.
H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 578, 2021.
M. M. S. Jogo, M. K. Biddinika, and A. Fadlil, “Klasifikasi Penyakit Diabetes dengan Algoritma Decision Tree dan Naïve Bayes,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer) Vol., vol. 6, no. 2, pp. 113–118, 2023.
B. W. Kurniadi, H. Prasetyo, G. L. Ahmad, B. Aditya Wibisono, and D. Sandya Prasvita, “Analisis Perbandingan Algoritma SVM dan CNN untuk Klasifikasi Buah,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. September, pp. 1–11, 2021.
Y. N. Paramitha, A. Nuryaman, A. Faisol, E. Setiawan, and D. E. Nurvazly, “Klasifikasi Penyakit Stroke Menggunakan Metode Naïve Bayes,” J. Siger Mat., vol. 04, no. 01, pp. 11–16, 2023.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Siti Alia Azhaar, Tohirin Al Mudzakir, Hilda Yulia Novita, Sutan Faisal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



