Analisis Klusterisasi Stunting Pada Balita Menggunakan Algoritma K-Medoids Untuk Mengidentifikasi Faktor Dominan

Authors

  • Leonardo Saragih Universitas Prima Indonesia, Medan
  • Nanda Sabrina Pasaribu Universitas Prima Indonesia, Medan
  • Novi Karlianti Harefa Universitas Prima Indonesia, Medan
  • Tajrin Tajrin Universitas Prima Indonesia, Medan

DOI:

https://doi.org/10.30865/jurikom.v12i3.8713

Keywords:

Stunting Cluster, Toddler, K-Medoids Algorithm, Identification of Dominant Factors

Abstract

Indonesia has a very rich biodiversity, including various medicinal plants that are highly financially beneficial and health-promoting. Among these medicinal plants, temulawak and turmeric are the two most popular rhizomes widely used in traditional medicine as well as the herbal industry. However, because the shape and color of these two plants are very similar, it is often difficult to distinguish between them, especially for laypeople and new industry workers. This research developed an Android-based application that can effectively and accurately distinguish between temulawak and turmeric to address this issue. For this application, the Convolutional Neural Network (CNN) architecture of the VGG-16 model is used along with the Tsukamoto fuzzy method as an additional layer. The trials conducted on the developed model using test data showed an accuracy rate of 0.97, a recall value of 0.98, and an F1 score of 0.97. Meanwhile, the blackbox testing shows that this application functions stably without technical issues, making it ready for use. Additionally, blackbox testing shows that the system can function stably without any issues, making it suitable for real-world use.

References

Herlena, A. C. P. (2023). Implementasi Data Mining Untuk Klasifikasi Stuting Gizi Pada Balita di Surabaya Menggunakan Metode K-Medoids. Jurnal Publikasi Teknik Informatika, 2(1), 61-67.

de Mathelin, A., Cecchi, N. E., Deheeger, F., Mougeot, M., & Vayatis, N. (2025). OneBatchPAM: A Fast and Frugal K-Medoids Algorithm. http://arxiv.org/abs/2501.19285.

Pohan, H., Zarlis, M., Irawan, E., Okprana, H., & Pranayama, Y. (2021). Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia. JUKI: Jurnal Komputer dan Informatika, 3(2), 97-104.

Apriyani, P., Dikananda, A. R., & Ali, I. (2023). Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi. Hello World Jurnal Ilmu Komputer, 2(1), 20–33. https://doi.org/10.56211/helloworld.v2i1.230.

Hidayat, F. P., Putra, R. P., Alfitrah, M. D., & Widodo, E. (2023). Implementasi Clustering K-Medoids dalam Pengelompokan Kabupaten di Provinsi Aceh Berdasarkan Faktor yang Mempengaruhi Kemiskinan. Indonesian Journal of Applied Statistics, 5(2), 121. https://doi.org/10.13057/ijas.v5i2.55080.

Puspita, I., Hayati, M. N., & Nohe, D. A. (2023). Pengelompokan Puskesmas Berdasarkan Kasus Balita Stunting di Kabupaten Paser Menggunakan Metode K-Medoids. EKSPONENSIAL, 14(1), 1-10.

Ranjawali, R., Carmen Talakua, A., Thimotius Abineno, R., Wira Wacana Sumba JlRSuprato No, K., Waingapu, K., Sumba Timur, K., & Tenggara Timu, N. (2023). Universitas Kristen Wira Wacana Sumba Fakultas Sains dan Teknologi SATI: Sustainable Agricultural Technology Innovation CLUSTERING STUNTING PADA BALITA DENGAN METODE K-MEANS DI PUSKESMAS KANATANG.

A. R. Cahyani, E. Riga Puspita, L. A. Pratiwi, and M. Muhajir, “Pengelompokan Stunting Menggunakan Metode K-Medoids Di Daerah Istimewa Yogyakarta (Diy),” 2024.

Samudi, S., Widodo, S., & Brawijaya, H. (2020). The K-Medoids Clustering Method for Learning Applications during the COVID-19 Pandemic. SinkrOn, 5(1), 116. https://doi.org/10.33395/sinkron.v5i1.10649.

Hermanto, E. M. P., Rochmanto, H. B., & Agustin, R. (2023). Pemetaan Program Indonesia Sehat dengan Pendekatan Keluarga (PIS PK) di Kabupaten Bondowoso dengan K-Medoids. Jurnal Statistika Dan Komputasi, 2(2), 83–92. https://doi.org/10.32665/statkom.v2i2.2307.

Maulana, P. R., Hananto, A. L., Hananto, A., & Priyatna, B. (2024). Klasterisasi Tingkat Penjualan Kedai Kopi Hallo Burjois Menggunakan Algoritma K-Medoids Sebagai Evaluasi. JURNAL FASILKOM, 14(1), 226-233.

Meiriza, A., Lestari, E., Putra, P., Oktadini, N. R., & Audya, M. (2022). Pemanfaatan Data Mining Dalam Penentuan Penyuluhan Penyakit Stunting Menggunakan Partitioning Around Medoids (PAM). TeIKa, 12(02), 89-96.

E. Engineering, “Penerapan Algoritma Clustering K-Medoids Untuk Menentukan Status Gizi Balita Application of the K-Medoids Clustering Algorithm to Determine the Nutritional Status of Toddlers,” vol. 7, pp. 94–99, 2025.

Nikmah, A., Nisa, C., & Riefky, M. (2025). Penerapan Algoritma K-Medoids untuk Pengelompokkan Provinsi di Indonesia Berdasarkan Status Gizi Anak Balita. Emerging Statistics and Data Science Journal, 3(1).

Sari, D. P. (2023). Implementasi Algoritma K-Medoids dan Aplikasi RapidMiner dalam Pengelompokkan Kasus BALITA Stunting. Brahmana: Jurnal Penerapan Kecerdasan Buatan, 5(1), 1-8..

Taufik Hidayat, Mohamad Jajuli, & Susilawati. (2023). Clustering daerah rawan stunting di Jawa Barat menggunakan algoritma K-Means. INFOTECH?: Jurnal Informatika & Teknologi, 4(2), 137–146. https://doi.org/10.37373/infotech.v4i2.642.

Schubert, E., & Rousseeuw, P. J. (2021). Fast and eager k-medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms. Information Systems, 101. https://doi.org/10.1016/j.is.2021.101804.

Tiwari, M., Kang, R., Lee, D., Thrun, S., Piech, C., Shomorony, I., & Zhang, M. J. (2023). BanditPAM++: Faster k-Medoids Clustering. arXiv preprint arXiv:2310.18844. https://doi.org/10.48550/arXiv.2310.18844.

Additional Files

Published

2025-07-01

How to Cite

Saragih, L., Pasaribu, N. S., Harefa, N. K., & Tajrin, T. (2025). Analisis Klusterisasi Stunting Pada Balita Menggunakan Algoritma K-Medoids Untuk Mengidentifikasi Faktor Dominan. JURNAL RISET KOMPUTER (JURIKOM), 12(3), 352–360. https://doi.org/10.30865/jurikom.v12i3.8713

Issue

Section

Articles