Optimalisasi Metode RBFNN Dengan Fuzzy C-Means Dalam Prediksi Import Barang Konsumsi Indonesia
DOI:
https://doi.org/10.30865/jurikom.v12i4.8711Keywords:
RBFNN, FCM, MAPE, Prediction, Consumer Goods ImportsAbstract
Prediction or forecasting is an action that aims to find out future events based on indicators that influence an event. Consumer goods are products or goods purchased by people or households that are intended for direct consumption in the sense that they are not for further production purposes. Based on this, serious handling is needed to maintain the state of the Indonesian economy, especially in the industrial sector. Predicting the value of consumer goods imports is a step in finding out the value of consumer goods imports in the next period so that the government has a reference in determining policies. In this study, the prediction of the value of consumer goods imports was carried out based on factors that influence the value of consumer goods imports based on research in the field of economics. This study uses the Radial Basis Function Neural Network (RBFNN) method using a combination of clustering methods, namely Fuzzy C-Means Clustering to improve method performance. The RBFNN method is the best method used in predicting future data based on previous research and the FCM method is a clustering method that is able to overcome ambiguity in the prediction process. This study proves that the Fuzzy C-Means method is effective in optimizing the performance of the Radial Basis Function Neural Network method with a comparison of MAPE values in each combination, namely RBFNN - FCM 15.73%, RBFNN - K-Means 16.87% and RBFNN - Random centroid 17.70%. The learning rate parameter is directly proportional to the RBFNN - FCM model where the greater the learning rate, the better the model performance, indicating that the model does not need to do in-depth learning to recognize data patterns. In contrast to the fuzzification parameter which increases accuracy when the fuzzification value is lowered, indicating that the model does not require a very vague approach to recognize data patterns. The best architecture is 8 - 4 - 1 with a fuzzification parameter value of 1.5, a learning rate of 0.3 and a threshold error of 0.3 produced by a combination of RBFNN and FCM.References
M. C. B. Umanailo, M. Nawawi, and S. Pulhehe, “Konsumsi Menuju Konstruksi Masyarakat Konsumtif,” SIMULACRA: JURNAL SOSIOLOGI, vol. 1, no. 2, Nov. 2018, doi: 10.21107/sml.v1i2.4995.
B. E. Supriyanto, “Dampak Kebijakan Impor terhadap Ketahanan Pangan di Indonesia,” DItjen Perbendaharaan Kemenkeu RI KPPN Watampone .
I. D. G. Budiastawa, I. W. Santiyasa, and C. R. A. Pramartha, “Prediksi Dan Akurasi Nilai Tukar Mata Uang Rupiah Terhadap US Dolar Menggunakan Radial Basis Function Neural Network,” Jurnal Elektronik Ilmu Komputer Udayana , vol. 7, no. 4, pp. 309–317, 2019.
M. O. Ali et al., “Radial Basis Function Neural Networks-Based Short Term Electric Power Load Forecasting For Super High Voltage Power Grid,” 2022.
V. Veeramsetty, P. Kiran, M. Sushma, and S. R. Salkuti, “Weather Forecasting Using Radial Basis Function Neural Network in Warangal, India,” Urban Science, vol. 7, no. 3, Sep. 2023, doi: 10.3390/urbansci7030068.
W. Reza, F. Christin, H. Buan, and S. N. Abdussamad, “Comparison Of Radial Basis Function Neural Networks (RBFNN) And Autoregressive Moving Average (ARMA) Algorithms On Inflation Rate Prediction Models In Batam City-Widya Reza et.al Comparison Of Radial Basis Function Neural Networks (RBFNN) And Autoregressive Moving Average (ARMA) Algorithms On Inflation Rate Prediction Models In Batam City 1*,” Informatika dan Sains, vol. 14, no. 02, p. 2024, doi: 10.58471/infosains.v14i02.
M. Yogy Kurniawan, F. Hafidh, and dan Al Fath Riza Kholdani, Prosiding Hasil-Hasil Penelitian Tahun 2016 Seleksi Nilai Center Radial Basis Function Neural Network Menggunakan K-Means Pada Data Time Series.
H. S. Firdaus, A. L. Nugraha, B. Sasmito, M. Awaluddin, and C. A. Nanda, “Perbandingan Metode Fuzzy C-Means Dan K-Means Untuk Pemetaan Daerah Rawan Kriminalitas Di Kota Semarang,” 2021.
A. Siregar, A. Buono, and K. Priandana, “Perbandingan Algoritma K-Means dan Fuzzy C-Means untuk Clustering Citra Daun Melon,” Building of Informatics, Technology and Science (BITS), vol. 4, no. 3, Dec. 2022, doi: 10.47065/bits.v4i3.2534.
P. S. W. Richart and L. G. Meydianawati, “Faktor-Faktor Yang Berpengaruh Terhadap Impor Barang Konsumsi Di Indonesia,” E-Jurnal EP Unud, vol. 12, no. 3, pp. 613–623, 2014.
N. K. Mutiasari and G. B. Indrajaya, “Analisis Faktor-Faktor Yang Mempengaruhi Impor Beras Di Indonesia,” E-Jurnal EP Unud, vol. 11, no. 05, pp. 1699–1721, 2020.
R. Ardian, S. 1?, and S. Muljaningsih, “Analisis faktor-faktor yang mempengaruhi impor gula di Indonesia,” Online) KINERJA: Jurnal Ekonomi dan Manajemen, vol. 19, no. 1, p. 29, 2022, doi: 10.29264/jkin.v19i1.10880.
I. B. Prakoso and M. I. Hasmarini, “Determinan Impor Barang Konsumsi Indonesia,” Ekonomis: Journal of Economics and Business, vol. 6, no. 2, p. 836, Sep. 2022, doi: 10.33087/ekonomis.v6i2.662.
M. Juni, “Faktor-Faktor Yang Berpengaruh Terhadap Impor Barang Konsumsi Di Indonesia,” Jurnal Inovasi Penelitian, vol. 2, no. 12, pp. 3879–3886, 2022.
J. Saputra, M. Iqbal Al Aksha, and L. Maryani, “Analisis Perbandingan Efektivitas Metode Fuzzy C-Means dan K-Means dalam Mengelompokkan Buku Berdasarkan Frekuensi Peminjaman di Perpustakaan SMKN 1 Mandau,” EXPLORE, vol. 14, no. 2, pp. 87–92, 2024.
D. R. Rochmawati, “Prediksi Cuaca Dengan Jaringan Syaraf Tiruan Menggunakan Python,” Jurnal Teknologi Komputer dan Informatika, vol. 2, no. 2, pp. 162–171, 2024.
M. Agustin and T. Prahasto, “Penggunaan Jaringan Syaraf Tiruan Backpropagation Untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer Di Politeknik Negeri Sriwijaya,” Jurnal Sistem Informasi Bisnis, vol. 2, pp. 89–97, 2012.
S. Haykin, Neural Networks - A Comprehensive Foundation, vol. 9. 2005.
Md. W. Aditya, I. N. Sukajaya, and I. Gede Aris Gunadi, “Forecasting Jumlah Pasien DBD di BRSUD Kabupaten Tabanan Menggunakan Metode Regresi Linier,” Bali Medika Jurnal, vol. 10, no. 1, pp. 1–12, 2023, doi: 10.36376/bmj.v9i3.
T. Mariani and I. Rosyida, “Implementasi Metode Double Exponential Smoothing untuk Peramalan Luas Panen Padi di Kabupaten Pati dengan Bantuan Software Minitab 16,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 6, pp. 707–713, 2023, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 I Dewa Gede Budiastawa, I Made Gede Sunarya, I Made Agus Wirawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



