Identifikasi Penyakit Diabetes Mellitus Menggunakan Algoritma Support Vector Machine dan Random Forest
DOI:
https://doi.org/10.30865/jurikom.v12i4.8686Keywords:
Machine Learning, Random Forest, Support Vector Machine, Classification, DiagnosisAbstract
Diabetes mellitus is a chronic metabolic disease that is increasingly common in Indonesia, estimated to affect more than 10.8 million people in 2020. This disease needs to be recognized early to prevent serious complications that can increase morbidity and mortality. By comparing the two methods, this study was conducted to determine whether one approach shows a better level of accuracy and to develop a classification model based on patient data. The research data was provided by the Anggadita Health Center which includes demographic data, lifestyle, and health assessment results from 1001 patients. One of the research steps is data pre-processing to evaluation. SVM and RF modeling can evaluate models using accuracy, precision, recall, and F1-score metrics. Based on the test results, the Random Forest algorithm showed the best performance with an accuracy of 99%, precision of 99%, recall of 100%, and F1-score of 99%, while SVM got an accuracy of 91%, precision of 0.93%, recall of 0.91%, and F1-score of 0.92%. This shows how well Random Forest separates patients with and without diabetes. This study is expected to be one of the references in obtaining information for making medical decision support systems so that health workers can be faster and more accurate in diagnosing diabetes mellitus.
References
Kemkes, “Penyakit Diabetes Melitus,” Kemkes.
R. F. N. Iskandar, D. H. Gutama, D. P. Wijaya, And D. Danianti, “Klasifikasi Menggunakan Metode Random Forest Untuk Awal Deteksi Diabetes Melitus Tipe 2,” J. Tek. Ind. Terintegrasi, Vol. 7, No. 3, Pp. 1620–1626, 2024, Doi: 10.31004/Jutin.V7i3.26916.
V. H. Ghaida, “Mengenal Komplikasi Diabetes Melitus,” Kemenkes.
R. G. Ginting, E. Girsang, J. B. Ginting, And H. Hartono, “Analisis Determinan Dan Prediksi Penyakit Diabetes Melitus Tipe 2 Menggunakan Metode Machine Learning: Scoping Review,” J. Matern. Kebidanan, Vol. 7, No. 1, Pp. 58–72, 2022, Doi: 10.34012/Jumkep.V7i1.2538.
G. Abdurrahman, “Jurnal Sistem Dan Teknologi Informasi Klasifikasi Penyakit Diabetes Melitus Menggunakan Adaboost Classifier,” Justindo (Jurnal Sist. Dan Teknol. Informasi), Vol. 7, No. 1, Pp. 59–66, 2022, [Online]. Available: Http://Jurnal.Unmuhjember.Ac.Id/Index.Php/Justindo
M. R. A. S. Maulana, “Klasifikasi Diabetes,” Pp. 1–23, 2024.
A. Desiani Et Al., “Perbandingan Algoritma Support Vector Machine ( Svm ) Dan Naïve,” Vol. 10, No. 1, Pp. 65–74, 2024.
M. U. Khairul Huda, “Senastika Universitas Malikussaleh,” Pp. 1–10, 2024.
R. Pahlevi, K. Q. Fredlina, And N. W. Utami, “Penerapan Algoritma Id3 Dan Svm Pada Klasifikasi Penyakit Diabetes Melitus Tipe 2,” Pros. Semin. Nas. Apl. Sains Teknol., Vol. 2, Pp. A64–A75, 2021, [Online]. Available: Https://Ejournal.Akprind.Ac.Id/Index.Php/Snast/Article/View/3340
A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor Pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., Vol. 1, No. 2, Pp. 29–33, 2020, Doi: 10.33096/Ijodas.V1i2.11.
H. Alrasyid, A. Homaidi, M. Kom, Z. Fatah, And M. Kom, “Comparison Support Vector Machine And Random Forest Algorithms In Detect Diabetes,” Vol. 1, No. 1, Pp. 447–453, 2024.
Marlina Haiza, Elmayati, Zulius Antoni, And Wijaya Harma Oktafia Lingga, “Penerapan Algoritma Random Forest Dalam Klasifikasi Penjurusan Di Sma Negeri Tugumulyo,” Penerapan Kecerdasan Buatan, Vol. 4, No. 2, Pp. 138–143, 2023.
K. U. K. Fida Maisa Hana, Deka Setia Negara, Perbandingan Algoritm. Neural Netw. Dengan Linier Discrim. Anal. Pada Klasifikasi Penyakit Diabetes, Vol. 1, Pp. 1541–1541, 2020.
S. Rabbani, D. Safitri, And N. Rahmadhani, “Comparative Evaluation Of Svm Kernels For Sentiment Classification In Fuel Price Increase Analysis Perbandingan Evaluasi Kernel Svm Untuk Klasifikasi Sentimen Dalam Analisis Kenaikan Harga Bbm,” Vol. 3, No. October, Pp. 153–160, 2023.
B. R. Prasetyo, E. D. Wahyuni, And P. M. Kusumantara, “Komparasi Performa Model Berbasis Algoritma Random Forest Dan Lightgbm Dalam Melakukan Klasifikasi Diabetes Melitus Gestasional,” J. Inform. Dan Tek. Elektro Terap., Vol. 12, No. 3, 2024, Doi: 10.23960/Jitet.V12i3.4817.
A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,” J. Siskom-Kb (Sistem Komput. Dan Kecerdasan Buatan), Vol. 4, No. 1, Pp. 15–21, 2020, Doi: 10.47970/Siskom-Kb.V4i1.169.
Y. N. Paramitha, A. Nuryaman, A. Faisol, E. Setiawan, And D. E. Nurvazly, “Klasifikasi Penyakit Stroke Menggunakan Metode Naïve Bayes,” J. Siger Mat., Vol. 04, No. 01, Pp. 11–16, 2023, [Online]. Available: Https://Www.Kaggle.Com/Datasets/Zzettrkalpakbal/Full-Filled-
D. Nurnaningsih, D. Alamsyah, A. Herdiansah, And A. A. J. Sinlae, “Identifikasi Citra Tanaman Obat Jenis Rimpang Dengan Euclidean Distance Berdasarkan Ciri Bentuk Dan Tekstur,” Build. Informatics, Technol. Sci., Vol. 3, No. 3, Pp. 171–178, 2021, Doi: 10.47065/Bits.V3i3.1019.
P. N. Sabrina And A. Komarudin, “Prediksi Penyakit Diabetes Dengan Metode K-Nearest Neighbor ( Knn ) Dan Seleksi Fitur Information Gain,” vol. 8, no. 6, pp. 11320–11326, 2024.
N. Hidayah and Dodiman, “Implementasi Algoritma Multinomial Naïve Bayes, TF-IDF dan Confusion Matrix dalam Pengklasifikasian Saran Monitoring dan Evaluasi Mahasiswa Terhadap Dosen Teknik Informatika Universitas Dayanu Ikhsanuddin,” J. Akad. Pendidik. Mat., vol. 10, no. 1, pp. 8–15, 2024.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anggi Renata Agusti, Ahmad Fauzi, Kiki Ahmad Baihaqi, Tatang Rohana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



