Implementasi Metode Recurrent Neural Network Untuk Prediksi Kejang Pada Penderita Epilepsi Berdasarkan Data Electroenephalogram
DOI:
https://doi.org/10.30865/jurikom.v12i3.8656Keywords:
Deep Learning, RNN, EEG, Seizure, EpilepsyAbstract
Epilepsy is a chronic neurological disorder that causes patients to experience recurrent seizures. Seizures are one of the main symptoms of epilepsy, requiring medical treatment and close monitoring. A major challenge in epilepsy management is the difficulty in predicting when seizures will occur. Electroencephalogram (EEG) can detect seizures as it contains physiological information about brain neural activity. This study aims to predict seizures using a Recurrent Neural Network (RNN) method based on EEG data. Deep Learning is a branch of Machine Learning that uses artificial neural networks to solve problems involving large datasets. The data used in this research is the Epileptic Seizure Recognition dataset obtained from Kaggle. It consists of patient ID attributes, 178 numerical attributes representing EEG signals, and a label y indicating conditions during the recording, including eyes open, eyes closed, healthy brain, tumor location, and seizure activity. The deep learning model tested is a Recurrent Neural Network (RNN) designed to learn patterns in the data. Performance evaluation was conducted using metrics including accuracy, precision, recall, and F1-Score. Based on the application of the RNN method and testing using EEG data, the best condition was achieved with a three-layer Long Short-Term Memory architecture and optimal training parameters, resulting in a seizure prediction accuracy of 98.6%. This result demonstrates that the model is capable of effectively and efficiently predicting the likelihood of seizure occurrences.
References
V. M. P. Ade Rahayu , Achmad Fauzi, “Diagnosa Penyakit Epilepsi Menggunakan Metode Bayes,” vol. 2, no. 4, 2024.
A. Abdullah and A. Ikhsani, “Epilepsi Bangkitan Umum Tonik-Klonik Pada Pasien Laki - Laki Berusia 22 Tahun?: Laporan Kasus,” J. Kesehat. Tambusai, vol. 2, no. 3, pp. 262–266, 2021, doi: 10.31004/jkt.v2i3.2375.
K. N. Fatmi, D. Roshinta, L. Dewi, and M. In’am Ilmiawan, “The Relation of Duration of Epilepsy, Seizure Frequency and AED Adherence With Cognitive Function in Epilepsy Patients,” J. Nas. Ilmu Kesehat. , vol. 4, no. 2621–6507, p. 52, 2022.
M. I. Girindra, “Pengenalan Pola Sinyal Eeg Berbasis Fitur Iaf Dan Metode Deep Learning Untuk Deteksi Epilepsi,” 2021.
A. Hanafiah, Y. Arta, H. O. Nasution, and Y. D. Lestari, “Penerapan Metode Recurrent Neural Network dengan Pendekatan Long Short-Term Memory (LSTM) Untuk Prediksi Harga Saham,” Bull. Comput. Sci. Res., vol. 4, no. 1, pp. 27–33, 2023, doi: 10.47065/bulletincsr.v4i1.321.
K. M. Alalayah, E. M. Senan, H. F. Atlam, I. A. Ahmed, and H. S. A. Shatnawi, “Effective Early Detection of Epileptic Seizures through EEG Signals Using Classification Algorithms Based on t-Distributed Stochastic Neighbor Embedding and K-Means,” Diagnostics, vol. 13, no. 11, pp. 1–24, 2023, doi: 10.3390/diagnostics13111957.
V. Gabeff et al., “Interpreting deep learning models for epileptic seizure detection on EEG signals,” Artif. Intell. Med., vol. 117, p. 102084, 2021, doi: 10.1016/j.artmed.2021.102084.
S. Mounika and S. R. Reeja, “Forecasting Epileptic Seizures Using XGBoost Methodology and EEG Signals,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 10, pp. 1–8, 2024, doi: 10.4108/eetpht.10.5569.
Mulaab, “Deteksi Kejang Epilepsy Dengan Menggunakan Pemilihan Fitur Informatioan Gain Dan Pembelajaran Ensemble Random Forest,” vol. 9, no. 2, pp. 77–83, 2021.
O. Nurdiawan and A. Faqih, “Optimisasi Model Backpropagation untuk Meningkatkan Deteksi Kejang Epilepsi pada Sinyal Electroencephalogram,” vol. 9, no. 2, pp. 151–160, 2024.
A. A. Ghozi, A. Aprianti, A. D. P. Dimas, and R. Fauzi, “Analisis Prediksi Data Kasus Covid-19 di Provinsi Lampung Menggunakan Recurrent Neural Network (RNN),” Indones. J. Appl. Math., vol. 2, no. 1, p. 25, 2022, doi: 10.35472/indojam.v2i1.763.
A. P. Putra and A. M. Harahap, “Implementasi Time Series Forecasting dengan Algoritma LSTM untuk Pemantauan dan Prediksi Produktivitas Kelapa Sawit Berdasarkan Hasil Panen,” vol. 12, no. 2, pp. 46–56, 2025, doi: 10.30865/jurikom.v12i2.8495.
H. Utami, “Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network,” Indones. J. Appl. Stat., vol. 5, no. 1, p. 31, 2022, doi: 10.13057/ijas.v5i1.56825.
M. P. Pulungan, A. Purnomo, and A. Kurniasih, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Kepribadian MBTI Menggunakan Naive Bayes Classifier,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 7, pp. 1493–1502, 2023, doi: 10.25126/jtiik.1077989.
A. Pramudyantoro, E. Utami, and D. Ariatmanto, “Penggabungan K-Nearest Neighbors dan Lightgbm Untukprediksi Diabetes Pada Dataset Pima Indians: Menggunakanpendekatan Exploratory Data Analysis,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 3, pp. 1133–1144, 2024, [Online]. Available: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi/article/view/4966/2114
S. Farisi and S. Hadi, “Analisis Sentimen menggunakan Recurrent Neural Network Terkait Isu Anies Baswedan Sebagai Calon Presiden 2024,” eProceedings …, vol. 10, no. 2, p. 1682, 2023, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/19992%0Ahttps://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/19992/19357
W. I. Rahayu, C. Prianto, and E. A. Novia, “Perbandingan Algoritma K-Means dan Naive Bayes untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT. Pertamina (Persero),” J. Tek. Inform., vol. 13, no. 2, pp. 1–8, 2021.
I. Farisi, J. Shadiq, W. Priyadi, D. Maulana, and F. Sonia, “Penerapan Model Recurrent Neural Network ( RNN ) untuk Prediksi Curah Hujan Berbasis Data Historis,” vol. 9, no. 2, pp. 217–226, 2024.
S. S. Nurashila, F. Hamami, and T. F. Kusumasari, “Perbandingan Kinerja Algoritma Recurrent Neural Network (Rnn) Dan Long Short-Term Memory (Lstm): Studi Kasus Prediksi Kemacetan Lalu Lintas Jaringan Pt Xyz,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 3, pp. 864–877, 2023, doi: 10.29100/jipi.v8i3.3961.
D. Prediksi and B. Jaringan, “Kinerja algoritma backpropagation dan rnn dalam prediksi beban jaringan,” vol. 7, pp. 1044–1053, 2024, doi: 10.37600/tekinkom.v7i2.1586.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Raisya Febiyane, Yulison Harry Chrisnanto, Gunawan Abdillah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



