Penerapan Convolutional Neural Network Dan DenseNet121 untuk Identifikasi Penyakit Daun Jagung Di Daerah Toba
DOI:
https://doi.org/10.30865/jurikom.v12i4.8646Keywords:
CNN, DenseNet121, Hyperparameter, Optimizer, PreprocessingAbstract
Corn is one of the most important agricultural commodities in the Toba region of North Sumatra. However, its productivity is often reduced due to foliar diseases that appear prior to harvest. The three most commonly observed leaf diseases include leaf spot, blight, and rust. To support early detection efforts among local farmers, this study proposes an image-based classification system employing the Convolutional Neural Network (CNN) algorithm and the DenseNet121 model as a transfer learning approach. The primary objective of this research is to automatically identify the type of disease affecting corn leaves using image data, thereby enabling farmers to promptly implement appropriate countermeasures. A series of experiments were conducted to evaluate various model configurations, including different activation functions (ReLU and Tanh), adjustments to learning rates, and the tuning of other hyperparameters such as optimizers and preprocessing methods (normalization, rotation augmentation, zooming, and contrast adjustments). The results demonstrate that DenseNet121, when trained with an optimal learning rate of 0.001, achieved the highest accuracy of 97%, outperforming the custom-built CNN model which attained an accuracy of 95%. The combination of effective preprocessing techniques and hyperparameter tuning significantly contributed to the improved performance of the models. This study highlights the potential of image-based plant disease detection technologies in agriculture, particularly in aiding real-time decision-making, enhancing land management efficiency, and supporting increased corn yield.
References
S. Safruddin, J. W. Sitopu, A. A. Manurung, I. Satria, and A. Wanto, “Pengelompokkan Produksi Tanaman Jagung di Sumatera Utara Menggunakan Algoritma K-Medoids,” J. Media Inform. Budidarma, vol. 7, no. 1, p. 484, 2023, doi: 10.30865/mib.v7i1.5562.
S. F. Y. Away, D. Darnetti, and R. Afrizal, “Penanganan Pascapanen Benih Jagung Hibrida di PT Citra Nusantara Mandiri Kota Solok Provinsi Sumatera Barat,” J. Agribus. Community Empower., vol. 5, no. 2, pp. 96–107, 2022, doi: 10.32530/jace.v5i2.496.
R. Adenia, A. E. Minarno, and Y. Azhar, “Implementasi Convolutional Neural Network Untuk Ekstraksi Fitur Citra Daun Dalam Kasus Deteksi Penyakit Pada Tanaman Mangga Menggunakan Random Forest,” REPOSITOR, vol. 4, no. 4, pp. 473–482, 2022.
M. Farij Amrulloh et al., “Klasifikasi Penyakit Daun Bawang Menggunakan Algoritma CNN Xception Penulis Korespondensi,” Online, 2024.
T. Ayu, V. Dwi, and A. E. Minarno, “PENDIAGNOSA DAUN MANGGA DENGAN MODEL CONVOLUTIONAL NEURAL NETWORK,” 2021.
K. Qi, C. Yang, C. Hu, Y. Shen, and H. Wu, “Deep Object-Centric Pooling in Convolutional Neural Network for Remote Sensing Scene Classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 7857–7868, 2021, doi: 10.1109/JSTARS.2021.3100330.
S. Y. Yadhav, T. Senthilkumar, S. Jayanthy, and J. J. A. Kovilpillai, “Plant Disease Detection and Classification using CNN Model with Optimized Activation Function,” Proc. Int. Conf. Electron. Sustain. Commun. Syst. ICESC 2020, no. Icesc, pp. 564–569, 2020, doi: 10.1109/ICESC48915.2020.9155815.
R. Lumbantoruan, N. Rajagukguk, A. U. Lubis, M. Claudia, and H. Simanjuntak, “Two-step convolutional neural network classification of plant disease,” IAES Int. J. Artif. Intell., vol. 14, no. 1, p. 584, Feb. 2025, doi: 10.11591/ijai.v14.i1.pp584-591.
V. Tiwari, C. Pandey, A. Dwivedi, and V. Yadav, “Image Classification Using Deep Neural Network,” in Proceedings - IEEE 2020 2nd International Conference on Advances in Computing, Communication Control and Networking, ICACCCN 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 730–733. doi: 10.1109/ICACCCN51052.2020.9362804.
S. Panichella and M. Ruiz, “Requirements-collector: Automating requirements specification from elicitation sessions and user feedback,” in Proceedings of the IEEE International Conference on Requirements Engineering, IEEE Computer Society, Aug. 2020, pp. 404–407. doi: 10.1109/RE48521.2020.00057.
S. U. Rehman and V. Gruhn, “A Sequential VGG16+CNN-Based Automated Approach With Adaptive Input for Efficient Detection of Knee Osteoarthritis Stages,” IEEE Access, vol. 12, no. February, pp. 62407–62415, 2024, doi: 10.1109/ACCESS.2024.3395062.
D. Chakraborty, U. Sur, and P. K. Banerjee, “Random forest based fault classification technique for active power system networks,” 2019 5th IEEE Int. WIE Conf. Electr. Comput. Eng. WIECON-ECE 2019 - Proc., pp. 17–20, 2019, doi: 10.1109/WIECON-ECE48653.2019.9019922.
H. Tejaswini, M. M. Manohara Pai, and R. M. Pai, “Automatic Estuarine Fish Species Classification System Based on Deep Learning Techniques,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3468438.
F. Guo, R. He, and J. Dang, “Implicit Discourse Relation Recognition via a BiLSTM-CNN Architecture with Dynamic Chunk-Based Max Pooling,” IEEE Access, vol. 7, pp. 169281–169292, 2019, doi: 10.1109/ACCESS.2019.2954988.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, no. July, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243.
U. P. Singh, S. S. Chouhan, S. Jain, and S. Jain, “Multilayer Convolution Neural Network for the Classification of Mango Leaves Infected by Anthracnose Disease,” IEEE Access, vol. 7, pp. 43721–43729, 2019, doi: 10.1109/ACCESS.2019.2907383.
M. F. Almufareh, “An Edge Computing-Based Factor-Aware Novel Framework for Early Detection and Classification of Melanoma Disease Through a Customized VGG16 Architecture With Privacy Preservation and Real-Time Analysis,” IEEE Access, vol. 12, no. August, pp. 113580–113596, 2024, doi: 10.1109/ACCESS.2024.3444050.
N. Nurtiwi, R. Ruliana, and Z. Rais, “Convolutional Neural Network (CNN) Method for Classification of Images by Age,” JINAV J. Inf. Vis., vol. 3, no. 2, pp. 126–130, Dec. 2022, doi: 10.35877/454ri.jinav1481.
R. Yati, T. Rohana, and A. R. Pratama, “Klasifikasi Jenis Mangga Menggunakan Algoritma Convolutional Neural Network,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 3, p. 1265, Jul. 2023, doi: 10.30865/mib.v7i3.6445.
K. Stefanus and H. Leong, “Comparison of Random Forest Algorithm Accuracy With Xgboost Using Hyperparameters,” Proxies J. Inform., vol. 7, no. 1, pp. 15–23, 2024, doi: 10.24167/proxies.v7i1.12464.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Oppir Hutapea

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



