Implementasi Model ARIMA untuk Peramalan Reorder Point dalam Supply Chain Management
DOI:
https://doi.org/10.30865/jurikom.v12i3.8639Keywords:
Reorder Point, ARIMA, Time Series, Stationarity, MAPE, Inventory PredictionAbstract
This research analyzes the patterns and trends of reorder points in inventory management over a two-year period (2023-2024), utilizing weekly time series data generated from daily data resampling. The ARIMA (Autoregressive Integrated Moving Average) method was applied to forecast future reorder point values. An Augmented Dickey-Fuller (ADF) stationarity test revealed that the initial data was non-stationary but became stationary after a single differencing operation. Parameter identification using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots indicated that the ARIMA(1,1,1) model was the best choice, based on the lowest Akaike Information Criterion (AIC). Model accuracy was evaluated using Mean Absolute Percentage Error (MAPE), yielding a value of 0.02%, signifying an excellent level of prediction accuracy. Consequently, the ARIMA model is demonstrated to be reliable for forecasting reorder points, supporting more precise decision-making in inventory management.
References
J. Ekonomi, M. dan Akuntansi, K. Ilyas, and D. Eko Waluyo, “Neraca”, [Online]. Available: http://jurnal.kolibi.org/index.php/neraca141http://jurnal.kolibi.org/index.php/neracà
N. Novyta, L. Alhazami, and L. @mncu A. Id, “PERAMALAN PERMINTAAN PRODUK NATA DE COCO DALAM SUPPLY CHAIN MANAGEMENT DENGAN MODEL ARIMA,” vol. 7, no. 2, 2022.
L. Hablinawati and J. Nugraha, “Peramalan Nilai Tukar Petani di Daerah Istimewa Yogyakarta Menggunakan Metode ARIMA,” Emerging Statistics and Data Science Journal, vol. 2, no. 1, 2024.
M. Alfian et al., “Peramalan Harga Saham PT. Bank Central Asia, Tbk Menggunakan Metode ARIMA,” Jurnal Derivat, vol. 11, no. 1, 2024, [Online]. Available: https://finance.yahoo.com.
Muh. Qodri, U. Mukhaiyar, V. Ananda, and S. Maisaroh, “Comparison of Stock Prediction Using ARIMA Model with Multiple Interventions of Step and Pulse Functions,” Jurnal Ilmiah Sains, pp. 1–16, Mar. 2024, doi: 10.35799/jis.v24i1.51269.
Maya Sari Wahyuni, A. Zaki, S. Hidayat, and M. I. Pratama, “Penerapan Metode ARIMA dalam Meramalkan Kebutuhan Energi Listrik di Kota Makassar,” Journal of Mathematics, Computations and Statistics, vol. 7, no. 2, pp. 323–331, Oct. 2024, doi: 10.35580/jmathcos.v7i2.4388.
L. A. Hayati and N. Agustina, “Aplikasi Model ARIMA dalam Peramalan Produk Domestik Regional Bruto (PDRB) Pertambangan dan Penggalian Kalimantan Selatan (Application of ARIMA Model in Forecasting Gross Regional Domestic Product (GRDP) Mining and Quarrying in South Kalimantan).”
L. Hablinawati and J. Nugraha, “Peramalan Nilai Tukar Petani di Daerah Istimewa Yogyakarta Menggunakan Metode ARIMA,” Emerging Statistics and Data Science Journal, vol. 2, no. 1, 2024.
F. Rizki Kurniawan and R. Sutomo, “Forecasting Rice Inventory in Indonesia Using the ARIMA Algorithm Method,” Kurniawan and Sutomo, 2021. [Online]. Available: www.jmis.site
R. Hardianto, “PERAMALAN PENJUALAN TEH HIJAU DENGAN METODE ARIMA (STUDI KASUS PADA PT. MK).”
S. Schima Wulandari and S. Yurinanda, “Penerapan Metode ARIMA Dalam Memprediksi Fluktuasi Harga Saham PT Bank Central Asia Tbk,” 2021. [Online]. Available: www.finance.yahoo.com.
E. I. Sihombing, C. D. Suhendra, and L. F. Marini, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Data Time Series Untuk Prediksi Harga Komoditas Pangan Menggunakan Autoregressive Integrated Moving Average,” Media Online), vol. 4, no. 6, 2024, doi: 10.30865/klik.v4i6.1863.
Ritus Santra, “Uji Stasioneritas dalam Deret Waktu — Uji Dickey Fuller & Uji Dickey Fuller Tertambah (ADF),” https://medium.com/@ritusantra/tests-for-stationarity-in-time-series-dickey-fuller-test-augmented-dickey-fuller-adf-test-d2e92e214360.
R. J. A. G. Hyndman, “Forecasting: Principles and Practice,” https://otexts.com/fpp2/stationarity.html.
C. SIMANJUNTAK, W. SYAFMEN, and G. Z, “PEMODELAN ARIMA UNTUK PERAMALAN PERMINTAAN EKSPOR KARET DI PT. HOK TONG JAMBI,” E-Jurnal Matematika, vol. 13, no. 2, p. 154, May 2024, doi: 10.24843/mtk.2024.v13.i02.p456.
J. E. Saputra and W. Febrianti, “Application of Autoregressive Integrated Moving Average (ARIMA) for Forecasting Inflation Rate in Indonesia,” Jurnal Matematika, Statistika dan Komputasi, vol. 21, no. 2, pp. 382–396, Jan. 2025, doi: 10.20956/j.v21i2.36609.
“1. Bu Halwa 15 Eks, B5”.
D. A. Pallupi, T. Tarno, and A. Rusgiyono, “PERAMALAN HARGA GULA PASIR MENGGUNAKAN VARIASI KALENDER REGARIMA DENGAN MOVING HOLIDAY EFFECT (PERIODE JANUARI 2018 SAMPAI DENGAN DESEMBER 2022 DI PASAR KOTA SEMARANG),” Jurnal Gaussian, vol. 13, no. 1, pp. 230–239, Oct. 2024, doi: 10.14710/j.gauss.13.1.230-239.
M. Azman Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ”.
James Ho, “Time Series Data Analysis – Resample,” https://towardsdatascience.com/time-series-data-analysis-resample-1ff2224edec9/.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrea Cellista Alexandra, Kristoko Dwi Hartomo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



