Analisis Sentimen Komunitas Counter-Strike 2 (CS2) Menggunakan Support Vector Machine (SVM)

Authors

  • Saiful Faris Riyadi Universitas Jenderal Achmad Yani, Cimahi
  • Yulison Herry Chrisnanto Universitas Jenderal Achmad Yani, Cimahi
  • Gunawan Abdillah Universitas Jenderal Achmad Yani, Cimahi

DOI:

https://doi.org/10.30865/jurikom.v12i3.8620

Keywords:

Sentiment Analysis, Counter-Strike 2, Support Vector Machine, TF-IDF, User Reviews

Abstract

Counter-Strike 2 (CS2) is a game that has received a lot of enthusiasm from the gaming community since its release. User reviews on the Steam platform are the main source for understanding community sentiment towards this game. This study aims to analyze sentiment towards CS2 reviews using the Support Vector Machine (SVM) method. Data was collected through the Apify platform, then cleaned through processes such as tokenization, stopword removal, and lemmatization. Text features were converted into numerical values using Term Frequency-Inverse Document Frequency (TF-IDF) to be used in the SVM model. The SVM model was used to classify review sentiment into three categories: positive, neutral, and negative. Evaluation was conducted by measuring accuracy, confusion matrix, and classification reports. In the evaluation results, the SVM model using the One-vs-Rest (OVR) approach showed that the model without SMOTE produced an accuracy of 81.95%. After applying the Synthetic Minority Over-sampling (SMOTE) technique to the training data to balance the distribution between classes, the model accuracy increased slightly to 82.18%. This study provides valuable insights for game developers in understanding players' opinions about CS2. Additionally, this study demonstrates the potential of SVM in text-based sentiment analysis on user review platforms.

References

M. A. A. T. Utami, P. Silvianti, and M. Masjkur, “Algoritme Support Vector Machine untuk Analisis Sentimen Berbasis Aspek Ulasan Game Online Mobile Legends: Bang-Bang,” Xplore: Journal of Statistics, vol. 12, no. 1, pp. 63–77, Jan. 2023, doi: 10.29244/xplore.v12i1.1064.

R. Vincent, I. Maulana, and O. Komarudin, “PERBANDINGAN KLASIFIKASI NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM ANALISIS SENTIMEN DENGAN MULTICLASS DI TWITTER,” 2023.

A. F. Alkindi and N. Nasution, “ANALISIS SENTIMEN ULASAN PENGGUNA PADA GAME ROBLOX DENGAN METODE SUPPORT VECTOR MACHINE DAN NAIVE BAYES,” J-Com (Journal of Computer), vol. 4, no. 2, pp. 164–177, Jul. 2024, doi: 10.33330/j-com.v4i2.3319.

“Husnul Mawaddah, 190212035, FTK, PTI”.

A. Pangestu, Y. T. Arifin, and R. A. Safitri, “ANALISIS SENTIMEN REVIEW PUBLIK PENGGUNA GAME ONLINE PADA PLATFORM STEAM MENGGUNAKAN ALGORITMA NAÏVE BAYES,” 2023.

E. Lutfina, W. Andriana, S. Quamila, P. Wiratmaja, and E. Febrianti, “Science, Technology and Management Journal Metode dan Algoritma Dalam Sentimen Analisis: Systematic Literature Review Info Artikel,” 2024, doi: 10.53416/stmj.v4i2.

Y.-H. Chen, “XGBoost Hyperberd Model Using Steam Platform XGBoost Hyperberd Model Using Steam Platform XGBoost Hyperberd Model Using Steam Platform Gaming Data.” [Online]. Available: http://library.ucf.edu

M. Y. Febrianta et al., “Analisis Ulasan Indie Video Game Lokal pada Steam Menggunakan Analisis Sentimen dan Pemodelan Topik Berbasis Latent Dirichlet Allocation.”

SteamDB, “Counter - Strike 2 Steam Charts,” https://steamdb.info/app/730/charts/#1y.

I. M. Karo Karo, R. Romia, S. Dewi, and P. M. Fadilah, “Hoax Detection on Indonesian Tweets using Naïve Bayes Classifier with TF-IDF,” Journal of Information System Research (JOSH), vol. 4, no. 3, pp. 914–919, Apr. 2023, doi: 10.47065/josh.v4i3.3317.

R. MuizK, R. Fajri Ishar, A. Febrianto, M. Nur Akbar, and K. Author, “ANALISIS SENTIMEN KOMENTAR PENGGUNA TERHADAP GAME MOBA LOKAPALA DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” vol. 4, no. 2, 2024.

R. H. Muhammadi, T. G. Laksana, and A. B. Arifa, “Combination of Support Vector Machine and Lexicon-Based Algorithm in Twitter Sentiment Analysis,” 2022. [Online]. Available: https://github.com/evanmartua34/

M. Fernanda and N. Fathoni, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Jurnal Informatika dan Sains Teknologi, vol. 1, no. 3, pp. 62–76, 2024, doi: 10.62951/modem.v1i3.112.

M. F. A. M. Muluk, “ANALISIS SENTIMEN PENGGUNA TIKTOK TERHADAP PRODUK FASHION DENGAN METODE NAÏVE BAYES,” 2024.

F. Saifullah Fattah and C. Indah Ratnasari, “Sentiment Analysis of Indonesian Presidential Candidate,” Fardhan Saifullah Fattah, 2023.

M. Hafizh Mahendra, D. Triantoro Murdiansyah, and K. Muslim Lhaksmana, “Dike : Jurnal Ilmu Multidisiplin Analisis Sentimen Tweet COVID-19 Menggunakan Metode K-Nearest Neighbors dengan Ekstraksi Fitur TF-IDF dan CountVectorizer,” 2023.

K. Tri Putra, S. Anggraini, L. Sutriani, A. Impron, and J. Informatika, “Analisis Sentimen Masyarakat Kalimantan Tengah Terhadap Perkebunan Kelapa Sawit Menggunakan TF-IDF dan Support Vector Machine,” 2025.

S. F. H. D. D. I. A. Q. R. A. A. G. F. Riszki Wijayatun Pratiwi, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM),” Journal of Informatics, Information System, Software Engineering and Applications, Nov. 21AD.

H. Apriyani, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus,” 2020. [Online]. Available: https://journal-computing.org/index.php/journal-ita/index

S. Muawanah, U. Muzayanah, M. G. R. Pandin, M. D. S. Alam, and J. P. N. Trisnaningtyas, “Stress and Coping Strategies of Madrasah’s Teachers on Applying Distance Learning During COVID-19 Pandemic in Indonesia,” Qubahan Academic Journal, vol. 3, no. 4, pp. 206–218, Nov. 2023, doi: 10.48161/Issn.2709-8206.

Additional Files

Published

2025-06-30

How to Cite

Riyadi, S. F., Chrisnanto, Y. H., & Abdillah, G. (2025). Analisis Sentimen Komunitas Counter-Strike 2 (CS2) Menggunakan Support Vector Machine (SVM). JURNAL RISET KOMPUTER (JURIKOM), 12(3), 221–229. https://doi.org/10.30865/jurikom.v12i3.8620

Issue

Section

Articles