Klasifikasi Kanker Payudara Berbasis Deep Learning Menggunakan Vision Transformer dengan Teknik Augmentasi Data Citra
DOI:
https://doi.org/10.30865/jurikom.v12i3.8619Keywords:
Data augmentation, model evaluation, breast cancer classification, mammography, vision Transformer,Abstract
Breast cancer ranks among the leading causes of death in women worldwide. Early detection through mammographic image analysis plays a crucial role in increasing survival rates. However, manual interpretation of mammograms requires expert knowledge and is prone to errors. This study aims to develop a breast cancer classification model using mammography images based on the Vision Transformer (ViT) architecture without employing transfer learning. The dataset used is the Digital Database for Screening Mammography (DDSM), consisting of two categories: benign and malignant. To address class imbalance, undersampling and data augmentation techniques (flipping, rotation, cropping, and noise injection) were applied. All images were normalized and resized to 224×224 pixels to match the ViT input requirements. The model was trained for five epochs with a batch size of 16. Evaluation on the test data was conducted using seven metrics: accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Cohen’s Kappa Score, and Area Under the Curve (AUC). The results show that the model achieved an accuracy of 92.50%, precision of 90.48%, recall of 95.00%, F1-score of 92.68%, MCC of 85.11%, Kappa Score of 85.00%, and AUC of 95.75%. These findings indicate that the Vision Transformer is highly effective for mammographic image classification and holds potential as a reliable tool for automated breast cancer diagnosis support.
References
Della Zulfa Rifda, Zahroh Shaluhiyah, and Antono Surjoputro, “Studi Fenomenologi Pasien Kanker Payudara dalam Upaya Meningkatkan Kualitas Hidup : Literature Review,” Media Publ. Promosi Kesehat. Indones., vol. 6, no. 8, pp. 1495–1500, 2023, doi: 10.56338/mppki.v6i8.3513.
K. Masyarakat, “Literatur review : pengetahuan remaja terhadap deteksi kanker payudara dengan cara pemeriksaan kanker payudara sendiri (sadari),” 2024.
Ratna Septia Devi, Triando Hamonangan Saragih, and Mohammad Reza Faisal, “Seleksi Fitur Hybrid Grey Wolf Optimization dan Particle Swarm Optimization pada Distance Biased Naive Bayes untuk Klasifikasi Kanker Payudara,” J. Inform. Polinema, vol. 10, no. 2, pp. 307–314, 2024, doi: 10.33795/jip.v10i2.4737.
N. Afiatuddin, M. T. Wicaksono, V. R. Akbar, R. Rahmaddeni, and D. Wulandari, “Komparasi Algoritma Machine Learning dalam Klasifikasi Kanker Payudara,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 889, 2024, doi: 10.30865/mib.v8i2.7457.
B. Gheflati and H. Rivaz, “Vision Transformers for Classification of Breast Ultrasound Images,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2022-July, pp. 480–483, 2022, doi: 10.1109/EMBC48229.2022.9871809.
G. Ayana et al., “Vision-Transformer-Based Transfer Learning for Mammogram Classification,” Diagnostics, vol. 13, no. 2, 2023, doi: 10.3390/diagnostics13020178.
D. Tsalsabila Rhamadiyanti and Kusrini, “Analisa Performa Convolutional Neural Network dalam Klasifikasi Citra Apel dengan Data Augmentasi,” J. Kaji. Ilm. Inform. dan Komput., vol. 5, no. 1, pp. 154–162, 2024, doi: 10.30865/klik.v5i1.2023.
X. T. Vo, D. L. Nguyen, A. Priadana, and K. H. Jo, “Efficient Vision Transformers with Partial Attention,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) , vol. 15141 LNCS, no. 4460, pp. 298–317, 2025, doi: 10.1007/978-3-031-73010-8_18.
R. Z. Fadillah, A. Irawan, M. Susanty, and I. Artikel, “Data Augmentasi Untuk Mengatasi Keterbatasan Data Pada Model Penerjemah Bahasa Isyarat Indonesia (BISINDO),” J. Inform., vol. 8, no. 2, pp. 208–214, 2021, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/10768
A. R. N. A, R. Setiawan, M. A. Hendrawan, D. B. Nugroho, and N. Rahman, “Deteksi Kanker Payudara Hasil Citra Mammografi menggunakan Metode Convolutional Neural Network ( CNN ) Arsitektur ResNet-50,” no. 01, pp. 25–32, 2024, doi: 10.25047/jiitu.v1i01.5498.
J. Jaradat, R. Amro, R. Hamamreh, A. Musleh, and M. Abdelgalil, “From Data to Diagnosis: Narrative Review of Open-Access Mammography Databases for Breast Cancer Detection,” High Yield Med. Rev., vol. 2, no. 1, pp. 1–10, 2024, doi: 10.59707/hymrpfnz8344.
A. Indrawati, “Penerapan Teknik Kombinasi Oversampling Dan Undersampling Untuk Mengatasi Permasalahan Imbalanced Dataset,” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 1, pp. 38–43, 2021, doi: 10.33387/jiko.v4i1.2561.
S. Yuliany, Aradea, and Andi Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” J. Buana Inform., vol. 13, no. 1, pp. 54–65, 2022, doi: 10.24002/jbi.v13i1.5022.
S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining. Cham, Switzerland: Springer, 2015.
Syefrida Yulina and Hoky Nawa, “Dataset Gambar Wajah untuk Analisis Personal Identification,” J. Appl. Comput. Sci. Technol., vol. 3, no. 2, pp. 193–198, 2022, doi: 10.52158/jacost.v3i2.427.
M. R. Kusnaidi, T. Gulo, and S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 330–338, 2022, doi: 10.47065/josyc.v3i4.2112.
R. S. Wahono, Data Mining Data mining, vol. 2, no. January 2013. 2023. [Online]. Available: https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part
J. Homepage, D. Saputra, and T. Y. Hadiwandra, “Indonesian Journal of Informatic Research and Software Engineering Classification Of Letters And Numbers In Bisindo Using The Convolutional Neural Network Method Klasifikasi Huruf Dan Angka Dalam Bisindo Menggunakan Metode Convolutional Neural Network,” Ijirse, vol. 4, no. 2, pp. 88–95, 2024.
E. Astiadewi, M. Martanto, A. R. Dikananda, dan D. Rohman, “Algoritma YOLOv8 untuk Meningkatkan Analisa Gambar dalam Mendeteksi Jerawat,” Jurnal Informatika Teknologi dan Sains (JINTEKS), vol. 7, no. 1, pp. 346–353, Feb. 2025.
K. M. Al-Gethami, M. T. Al-Akhras, and M. Alawairdhi, “Empirical Evaluation of Noise Influence on Supervised Machine Learning Algorithms Using Intrusion Detection Datasets,” Secur. Commun. Networks, vol. 2021, 2021, doi: 10.1155/2021/8836057.
J. D. Halim, “Klasifikasi Sel Darah Putih Menggunakan Vision Transformer ( ViT ),” vol. 6, no. November, pp. 291–307, 2024.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhamad Salman Ardiyansyah, Fajri Rakhmat Umbara, Melina

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



