Optimasi Algoritma K-Nearest Neighbors pada Prediksi Penyakit Diabetes

Authors

  • Sitti Arfiah Universitas Sulawesi Barat, Majene
  • Farid Wajidi Universitas Sulawesi Barat, Majene
  • Nahya Nur Universitas Sulawesi Barat, Majene

DOI:

https://doi.org/10.30865/jurikom.v12i3.8615

Keywords:

Optimization K-Nearest Neighbors, GridSearchCV, Synthetic Minority Over-sampling Technique, Diabetes Prediction

Abstract

Diabetes mellitus is a chronic disease characterized by high blood sugar levels due to metabolic system disturbances, specifically related to insulin production or effectiveness. If left untreated, it can lead to serious complications. Early and accurate detection is crucial for timely medical intervention. This research aimed to improve the accuracy of a diabetes classification system using the K-Nearest Neighbors (KNN) algorithm. An initial KNN model with imbalanced data (without SMOTE) and no GridSearchCV achieved only 83% accuracy. While seemingly good, its performance for the positive class was low (precision 80%, recall 69%, F1-score 74%), indicating bias towards the negative class due to data imbalance. To address this, several steps were implemented: data preprocessing (handling missing data and feature normalization), hyperparameter optimization using GridSearchCV, and data balancing with SMOTE. After these improvements, the KNN model showed significant performance gains, with accuracy reaching 94%. Performance for the positive class greatly improved (precision 90%, recall 98%, F1-score 94%), and for the negative class (precision 98%, recall 89%, F1-score 93%). These results demonstrate that combining preprocessing, model optimization, and class balancing effectively enhances the KNN algorithm's ability to detect diabetes more accurately and robustly, proving that machine learning with proper data processing can aid in developing medical decision support systems for early diabetes diagnosis.

References

I. D. A. E. C. Astutisari, A. Y. D. AAA Yuliati Darmini, and I. A. P. W. Ida Ayu Putri Wulandari, “Hubungan Pola Makan Dan Aktivitas Fisik Dengan Kadar Gula Darah Pada Pasien Diabetes Melitus Tipe 2 Di Puskesmas Manggis I,” Jurnal Riset Kesehatan Nasional, vol. 6, no. 2, pp. 79–87, 2022, doi: 10.37294/jrkn.v6i2.350.

A. Hamid and Hamdin, “Hidup Sehat Produktif Bebas Diabetes dengan Edukasi Kesehatan Tentang Penyakit Diabetes Melitus di Wilayah Kerja PKM Unit 1 Sumbawa Healthy Productive Life Free from Diabetes with Health Education about Diabetes Mellitus in the PKM Unit 1 Sumbawa Working,” vol. 1, no. 3, 2024.

Kementerian Kesehatan Republik Indonesia, “Review kebijakan Diabetes Melitus berbasis transformasi sistem Kesehatan dan outlook 2025,” 2025.

E. E. Mustofa, J. Purwono, and Ludiana, “Penerapan Senam Kaki Terhasap Kadar Glukosa Darah Pada Pasien Diabetes Melitus Di WIlayah Kerja Puskesmas Purwosari Kec. Metro Utara,” Jurnal Cendikia Muda, vol. 2, no. 1, pp. 78–86, 2022.

A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indonesian Journal of Data and Science, vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.

S. E. Hartono, “Hubungan Tingkat Pendidikan, Lama Menderita Sakit Dengan Tingkat Pengetahuan 5 Pilar Penatalaksanaan Diabetes Mellitus Di Wilayah Kerja Puskesmas Sungai Durian Kabupaten Kbu Raya Kalimantan Barat,” Journal of TSCSIKep, vol. 9, no. 1, pp. 2775–0345, 2024, [Online]. Available: http://ejournal.annurpurwodadi.ac.id/index.php/TSCS1Kep

S. S. Fandinata and R. Darmawan, “Pengaruh Kepatuhan Minum Obat Oral Anti Diabetik Terhadap Kadar Gula Darah Pada Pasien Diabetes Mellitus Tipe II,” Jurnal Bidang Ilmu Kesehatan, vol. 10, no. 1, pp. 23–31, 2020, doi: 10.52643/jbik.v10i1.825.

A. Yaqin, D. Kurniawan, and J. Zeniarja, “Optimasi Algoritma K-Nearest Neighbors Menggunakan GridSearchCV untuk Klasifikasi Penyakit Diabetes,” vol. 16, no. 01, pp. 75–84, 2025, doi: 10.35970/infotekmesin.v16i1.2557.

A. Oktaviana, D. P. Wijaya, A. Pramuntadi, and D. Heksaputra, “Prediksi Penyakit Diabetes Melitus Tipe 2 Menggunakan Algoritma K-Nearest Neighbor (K-NN),” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 3, pp. 812–818, 2024, doi: 10.57152/malcom.v4i3.1268.

N. Maulidah, R. Supriyadi, D. Y. Utami, F. N. Hasan, A. Fauzi, and A. Christian, “Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes,” Indonesian Journal on Software Engineering (IJSE), vol. 7, no. 1, pp. 63–68, 2021, doi: 10.31294/ijse.v7i1.10279.

J. Lemantara and T. Lusiani, “Analisis Prediksi Penyakit Diabetes Pada Wanita Menggunakan Metode Naïve Bayes Dan K-Nearest Neighbor,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4911.

R. A. Pangestu, T. Taslim, Y. Yunefri, K. Kursiasih, and E. Sabna, “Optimasi Nilai k Pada Algoritma K-Nearest Neighbor Untuk Klasifikasi Pasien Covid-19 Yang Membutuhkan Ruangan ICU,” INOVTEK Polbeng - Seri Informatika, vol. 7, no. 1, p. 147, 2022, doi: 10.35314/isi.v7i1.2481.

E. Safitri, D. Rofianto, N. Purwati, H. Kurniawan, and S. Karnila, “Prediksi Penyakit Diabetes Melitus Menggunakan Algoritma Machine Learning Diabetes Mellitus Disease Prediction using Machine Learning Algorithms,” vol. 12, no. 4, pp. 760–766, 2024, doi: 10.26418/justin.v12i4.84620.

A. Anggrawan and M. Mayadi, “Application of KNN Machine Learning and Fuzzy C-Means to Diagnose Diabetes,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 22, no. 2, pp. 405–418, 2023, doi: 10.30812/matrik.v22i2.2777.

H. Syafwan, F. Siagian, P. Putri, M. Handayani, S. H. Tinggi Manajemen Informatika dan Komputer Royal Jln M Yamin No, and S. Utara, “Forecasting Jumlah Pengangguran Di Kabupaten Asahan Menggunakan Metode Weighted Moving Average,” Jurnal Teknik Informatika Kaputama (JTIK), vol. 5, no. 2, pp. 224–229, 2021.

B. F. Rochman, A. Rahim, and T. A. Y. Siswa, “Optimasi Algoritma KNN dengan Parameter K dan PSO Untuk Klasifikasi Status Gizi Balita,” Jurnal Media Informatika Budidarma, vol. 8, no. 3, p. 1609, 2024, doi: 10.30865/mib.v8i3.7841.

S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 6, no. 2, pp. 118–127, 2021, doi: 10.31294/ijcit.v6i2.10438.

M. Rahmadiah and P. Suparman, “Penerapan Metode K-Nearest Neighbour Untuk Sistem Penentuan Peminjaman Modal Nasabah Bank Syariah Indonesia Cabang Cikarang Berbasis Website,” Jurnal informasi dan Komputer, vol. 10, no. 2, pp. 189–197, 2022.

A. Surya Firmansyah, A. Aziz, and M. Ahsan, “Optimasi K-Nearest Neighbor Menggunakan Algoritma Smote Untuk Mengatasi Imbalance Class Pada Klasifikasi Analisis Sentimen,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 6, pp. 3341–3347, 2024, doi: 10.36040/jati.v7i6.7257.

L. Trihardianingsih and G. S. Lasatira, “Optimasi Hyperparameter GridSearchCV pada Klasifikasi Kualitas Udara menggunakan Support Vector Machine,” vol. 1, no. 2, pp. 40–47, 2024.

Additional Files

Published

2025-06-30

How to Cite

Arfiah, S., Wajidi, F., & Nur, N. (2025). Optimasi Algoritma K-Nearest Neighbors pada Prediksi Penyakit Diabetes. JURNAL RISET KOMPUTER (JURIKOM), 12(3), 230–240. https://doi.org/10.30865/jurikom.v12i3.8615

Issue

Section

Articles