Pemanfaatan Model Linier dalam Klasifikasi Penyakit Diabetes Berbasis Machine Learning
DOI:
https://doi.org/10.30865/jurikom.v12i3.8587Keywords:
Diabetes, Classification, Linear Model, Machine Learning, Performance EvaluationAbstract
Diabetes is a chronic disease that may lead to serious health complications if not detected and treated early. Early detection plays a crucial role in minimizing long-term risks. This study aims to classify diabetes cases using a machine-learning approach based on linear models. The models applied in this research include logistic regression, linear discriminant analysis (LDA), ridge classifier, and support vector machine (SVM) with a linear kernel. We preprocessed the dataset to ensure quality and consistency. We evaluated each model’s performance using accuracy, precision, recall, F1-score, and AUC-ROC. Experimental results show that the ridge classifier achieved the highest performance, followed by LDA and linear SVM, with comparable results. Logistic regression also performed reasonably well, albeit with slightly lower metrics. These findings indicate that the linear model can provide accurate and reliable classification in the task of predicting diabetes, contributing to the proof that this model can serve as the basis for a decision support system for early diabetes diagnosis in the healthcare sector.
References
N. M. Putry, “Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Mellitus,” EVOLUSI J. Sains dan Manaj., vol. 10, no. 1, 2022, doi: 10.31294/evolusi.v10i1.12514.
S. Nurvita, “Diabetes Mellitus Tipe 1 Pada Anak Di Indonesia,” PREPOTIF J. Kesehat. Masy., vol. 7, no. 1, pp. 635–639, 2023.
A. E. Satriatama et al., “Analisis Klaster Data Pasien Diabetes untuk Identifikasi Pola dan Karakteristik Pasien,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 5, no. 3, pp. 172–182, 2023, doi: 10.47233/jteksis.v5i3.828.
M. Saputra, J. P. Sidabuke, R. P. Sinulingga, and R. B. Tamba, “Analisis Metode Algoritma K-Nearest Neighbor (KNN) dan Naive Bayes Untuk Klasifikasi Diabetes Mellitus,” J. TEKINKOM, vol. 6, no. 2, pp. 723–729, 2023, doi: 10.37600/tekinkom.v6i2.942.
N. S. Niko, A. Rahman, D. Marini Umi Atmaja, and A. Basri, “Prediksi Penyakit Diabetes Untuk Pencegahan Dini Dengan Metode Regresi Linear,” Bull. Inf. Technol., vol. 4, no. 3, pp. 313–219, 2023, doi: 10.47065/bit.v4i3.739.
N. L. Sabili and F. R. Umbara, “KLASIFIKASI PENYAKIT DIABETES MENGGUNAKAN ALGORITMA CATEGORICAL BOOSTING DENGAN FAKTOR RISIKO DIABETES,” vol. 8, no. 6, pp. 11391–11398, 2024.
Erlin, Yulvia Nora Marlim, Junadhi, Laili Suryati, and Nova Agustina, “Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 11, no. 2, pp. 88–96, 2022, doi: 10.22146/jnteti.v11i2.3586.
D. S. Negara and K. U. Haqiqi, “Perbandingan Algoritma Neural Network dengan Linear Discriminant Analysis (LDA) pada Klasifikasi Penyakit Diabetes di RSUD Kudus,” J. Ilmu Komput. dan atematika, vol. 1, no. 1, pp. 47–55, 2020.
S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023, doi: 10.57152/malcom.v3i2.897.
Muhammad Nur Ihsan Muhlashin and A. Stefanie, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan YOLO V8,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1363–1368, 2023, doi: 10.36040/jati.v7i2.6927.
I. Maulana, A. Mutoi Siregar, and A. Fauzi, “Optimization of Machine Learning Model Accuracy for Brain Tumor Classification With Principal Component Analysis,” J. Tek. Inform., vol. 5, no. 3, pp. 903–915, 2024.
R. P. Kurniadi, R. R. Saedudin, and V. P. Widartha, “Perbandingan Akurasi Algoritma K-Nearest Neighbor Dan Logistic Regression Untuk Klasifikasi Penyakit Diabetes,” e-Proceeding Eng., vol. 8, no. 5, pp. 9757–9764, 2021.
A. D. Cahyani and A. Basuki, “Klasifikasi Diabetes Mellitus Menggunakan Support Vector Machine (Studi Kasus: Puskesmas Modopuro, Mojokerto),” Rekayasa, vol. 12, no. 2, pp. 174–182, 2019, doi: 10.21107/rekayasa.v12i2.19763.
F. M. Hana, N. D. Setia, and K. U. Khaqiqi, “PERBANDINGAN ALGORITMA NEURAL NETWORK DENGAN LINIER DISCRIMINANT ANALYSIS (LDA) PADA KLASIFIKASI PENYAKIT DIABETES,” vol. 1, pp. 1541–1541, 2020.
UCI Machine Learning, “Pima Indians Diabetes Database,” 2019. [Online]. Available: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
I. Maulana and S. Ernawati, “Meningkatkan Klasifikasi Penyakit Diabetes Menggunakan Metode Ensemble Softvoting Dengan SMOTE-ENN dan Optimasi Bayesian,” vol. 13, no. 1, pp. 71–86, 2025.
A. N. W. Zain, M. Muafi, and A. Tholib, “Klasifikasi Data Mining Di Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Sistem Informasi Fakultas Teknik Universitas Nurul Jadid,” SKANIKA Sist. Komput. dan Tek. Inform., vol. 7, no. 2, pp. 204–213, 2024, doi: 10.36080/skanika.v7i2.3200.
I. Hakim and T. Afriliansyah, “Implementasi Algoritma Komputasi Linear Regression untuk Optimasi Prediksi Hasil Pertanian,” vol. 5, no. 3, pp. 1423–1434, 2024.
A. Pramudyantoro, E. Utami, and D. Ariatmanto, “Penggabungan K-Nearest Neighborsdan Lightgbm Untukprediksi Diabetes Pada Dataset Pima Indians: Menggunakanpendekatan Exploratory Data Analysis,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 3, pp. 1133–1144, 2024, [Online]. Available: https://jurnal.stkippgritulungagung.ac.id/index.php/jipi/article/view/4966/2114
D. Kurniadi, F. Nuraeni, N. Faturrohman, and A. Mulyani, “Klasifikasi Perputaran Karyawan Perusahaan Menggunakan Algoritma Random Forest dan Random Over-sampling,” Edu Komputika J., vol. 10, no. 2, pp. 93–103, 2024, doi: 10.15294/edukomputika.v10i2.73782.
E. J. Maksabedian Hernandez, I. Tingzon, L. Ampil, and J. Tiu, “Identifying chronic disease patients using predictive algorithms in pharmacy administrative claims: an application in rheumatoid arthritis,” J. Med. Econ., vol. 24, no. 1, pp. 1272–1279, 2021, doi: 10.1080/13696998.2021.1999132.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Faris Prasetya Ajisaputra, Wahyu Aji Eko Prabowo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



