Klasifikasi Penyakit Diabetes Menggunakan Pendekatan Pembelajaran Mesin dengan Model Non-linier

Authors

DOI:

https://doi.org/10.30865/jurikom.v12i3.8586

Keywords:

Machine Learning, Diabetes Mellitus, Support Vector Machine, Random Forest, K-Nearest Neighbors

Abstract

The increasing prevalence of diabetes mellitus highlights the need for accurate early detection methods. This study proposes a classification model for diabetes prediction using non-linear machine learning algorithms, namely Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (K-NN). The dataset, obtained from Kaggle, includes clinical features such as glucose levels, BMI, blood pressure, and insulin. The methodology comprises data preprocessing, partitioning the data into training and testing sets, and evaluating the model’s using accuracy, precision, recall, and F1-score. Experimental results indicate that the Random Forest algorithm achieved the highest performance, followed by SVM and K-NN. We attribute Random Forest’s superior performance to its robustness in handling complex patterns and minimizing overfitting. We expect this research to contribute to developing practical early detection tools for diabetes, thereby supporting timely and data-driven medical decision-making.

References

REFERENCES

S. Wirapati, D. Luh, G. Astuti, and M. Kom, “Sistem Pakar Untuk Membantu Diagnosis Diabetes Menggunakan Machine Learning Dengan Algoritma Jaringan Saraf Tiruan,” J. Elektron. Ilmu Komput. Udayana, vol. 11, no. 4, 2022.

R. Rizki, R. Athallah, I. Cholissodin, and P. P. Adikara, “Prediksi Potensi Pengidap Penyakit Diabetes berdasarkan Faktor Risiko Menggunakan Algoritme Kernel K-Nearest Neighbor,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id

J. J. Pangaribuan, “MENDIAGNOSIS PENYAKIT DIABETES MELITUS DENGAN MENGGUNAKAN METODE EXTREME LEARNING MACHINE,” 2022.

M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 393–399, Apr. 2021, doi: 10.29207/resti.v5i2.3008.

N. Maulidah, R. Supriyadi, D. Y. Utami, F. N. Hasan, A. Fauzi, and A. Christian, “Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes,” Indones. J. Softw. Eng., vol. 7, no. 1, pp. 63–68, 2021, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ijse63

A. Oktaviana, D. P. Wijaya, A. Pramuntadi, and D. Heksaputra, “Prediksi Penyakit Diabetes Melitus Tipe 2 Menggunakan Algoritma K-Nearest Neighbor (K-NN),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 812–818, May 2024, doi: 10.57152/malcom.v4i3.1268.

K. A. Saputro, E. M. Atsir, and H. Hasanah, “PERBANDINGAN TINGKAT AKURASI PENYAKIT DIABETES MENGGUNAKAN METODE REGRESI LOGISTIK DAN RANDOM FOREST,” vol. 4, no. 2, pp. 159–166, 2024.

F. R. Lumbanraja, F. Lufiana, Y. Heningtyas, and K. Muludi, “IMPLEMENTASI SUPPORT VECTOR MACHINE (SVM) UNTUK KLASIFIKASI PEDERITA DIABETES MELLITUS 1,*).”

W. Apriliah et al., “SISTEMASI: Jurnal Sistem Informasi Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” 2021. [Online]. Available: http://sistemasi.ftik.unisi.ac.id

P. N. Bayes, R. Logistik, R. Forest, and N. Bayes, “SENASTIKA Universitas Malikussaleh,” pp. 1–10.

I. M. Karo Karo and H. Hendriyana, “Klasifikasi Penderita Diabetes menggunakan Algoritma Machine Learning dan Z-Score,” J. Teknol. Terpadu, vol. 8, no. 2, pp. 94–99, 2022, doi: 10.54914/jtt.v8i2.564.

A. W. Mucholladin, F. A. Bachtiar, and M. T. Furqon, “Klasifikasi Penyakit Diabetes menggunakan Metode Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, pp. 622–633, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

G. Airlangga, “Comparative Analysis of Machine Learning Models for Predicting Diabetes: Unveiling the Superiority of Advanced Ensemble Methods,” G-Tech J. Teknol. Terap., vol. 8, no. 2, pp. 1272–1280, 2024, doi: 10.33379/gtech.v8i2.4246.

D. A. Albert and H. Leong, “Comparative Performance Analysis of Support Vector Machine and Random Forest on Diabetes Patient Data From Hospitals in the United States,” Proxies J. Inform., vol. 7, no. 2, pp. 85–101, 2024, doi: 10.24167/proxies.v7i2.12469.

H. Alrasyid, A. Homaidi, M. Kom, Z. Fatah, and M. Kom, “Comparison Support Vector Machine and Random Forest Algorithms in Detect Diabetes,” vol. 1, no. 1, pp. 447–453, 2024.

N. A. Maulidiyyah, T. Trimono, A. T. Damaliana, and D. A. Prasetya, “Comparison of Decision Tree and Random Forest Methods in the Classification of Diabetes Mellitus,” JIKO (Jurnal Inform. dan Komputer), vol. 7, no. 2, pp. 79–87, 2024, doi: 10.33387/jiko.v7i2.8316.

B. Alsadi et al., “An ensemble-based machine learning model for predicting type 2 diabetes and its effect on bone health,” BMC Med. Inform. Decis. Mak., vol. 24, no. 1, pp. 1–15, 2024, doi: 10.1186/s12911-024-02540-0.

S. A. Apurva, “COMP TIVE STUD Y OF MA CHINE LEARNING ALGORITHMS COMPARA STUDY MACHINE FOR DIABETES RISK PREDICTION : A FOCUS ON K - NN , SVM PREDICTION : , AND RANDOM FOREST,” vol. 19, no. 1, pp. 39–43, 2024.

Z. Maisat, E. Darmawan, and A. Fauzan, “Implementasi Optimasi Hyperparameter GridSearchCV Pada Sistem Prediksi Serangan Jantung Menggunakan SVM Implementation of GridSearchCV Hyperparameter Optimization in Heart Attack Prediction System Using SVM,” Unipdu, vol. 13, no. 1, pp. 8–15, 2023.

A. Hamied Nababan and M. Y. Hutagalung, “Hyperparameter Tuning Pada Model Stance Detection Menggunakan GridSearchCV,” J. Sains dan Teknol., vol. 5, no. 1, pp. 205–209, 2023, [Online]. Available: https://doi.org/10.55338/saintek.v5i1.1505

L. Afuan and R. R. Isnanto, “A comparative study of machine learning algorithms for fall detection in technology-based healthcare system: analyzing SVM, KNN, decision tree, random forest, LSTM, and CNN,” E3S Web Conf., vol. 605, 2025, doi: 10.1051/e3sconf/202560503051.

Additional Files

Published

2025-06-30

How to Cite

Adi, I. A. K., & Prabowo, W. A. E. (2025). Klasifikasi Penyakit Diabetes Menggunakan Pendekatan Pembelajaran Mesin dengan Model Non-linier. JURNAL RISET KOMPUTER (JURIKOM), 12(3), 262–268. https://doi.org/10.30865/jurikom.v12i3.8586

Issue

Section

Articles