Klasterisasi Data Stunting Pada Balita Di Puskesmas Xyz Dengan Menggunakan Metode Mixture Modelling

Authors

  • Anggun Delianda Universitas Malikussaleh, Lhokseumawe
  • Asrianda Asrianda Universitas Malikussaleh, Lhokseumawe
  • Zahratul Fitri Universitas Malikussaleh, Lhokseumawe

DOI:

https://doi.org/10.30865/jurikom.v12i3.8580

Keywords:

Clustering, Stunting, Toddle, Mixture Modelling, Puskesmas Peusangan

Abstract

This research is motivated by the high prevalence of stunting in Indonesia, reflecting nutritional imbalances in early childhood. To address this issue, an information technology approach is employed to identify at-risk infant groups. The analyzed data consists of anthropometric information, including height, weight, and age of infants, collected from the Peusangan Health Center. The applied method is the Gaussian Mixture Model (GMM) with the Expectation-Maximization algorithm to cluster the data into two groups: "Potential Stunting" and "Not Stunting." The research results indicate that several Posyandu and villages have notably high potential stunting rates, such as Posyandu Bungong Seulanga (141 infants) and Pante Gajah village (116 infants), with a higher prevalence among male infants (34.67%) and those aged 52–60 months (24.18%). Model evaluation using a confusion matrix on 1,465 data points showed a True Positive of 958 (65.36%), False Negative of 4 (0.27%), False Positive of 503 (34.33%), and True Negative of 0 (0%), with an accuracy of 65.36% and an error rate of 34.64%. However, a previous accuracy test on 1,665 data points only achieved 34.55%, indicating unsatisfactory individual prediction performance. In conclusion, Mixture Modelling is effective for clustering and identifying at-risk groups but lacks accuracy in individual predictions, with a bias toward the "Potential Stunting" class that requires improvement in future research.

References

A. Rahayu, F. Yulidasari, A. O. Putri, and L. Anggraini, Stunting dan Upaya Pencegahannya. 2018.

Y. Hidayatillah, M. M. AR, Y. P. Astuti, and R. S. D. Kumala, “Pemberdayaan Masyarakat dalam Pencegahan Stunting Desa Aenganyar Kecamatan Giligenting Kabupaten Sumenep,” J. Gembira Pengabdi. Kpd. Masy., vol. 1, no. 05, pp. 1195–1201, 2023.

T. Mulyaningsih, I. Mohanty, V. Widyaningsih, T. A. Gebremedhin, R. Miranti, and V. H. Wiyono, “Beyond personal factors: Multilevel determinants of childhood stunting in Indonesia,” PLoS One, vol. 16, no. 11, p. e0260265, 2021.

F. Mahmudah, N. Rahaningsih, R. D. Dana, and C. L. Rohmat, “Implementasi Data Mining Menggunakan Algoritma K-Means untuk Mempermudah Pengelompokkan Wilayah Rawan Stunting di Kabupaten Cirebon,” INTEK J. Inform. dan Teknol. Inf., vol. 8, no. 1, pp. 44–52, 2025.

N. Fauziah, “Penerapan Metode Finite Mixture Partial Least Square dalam Analisis Structural Equation Modeling Pada Data Pendidikan di Indonesia Tahun 2022.” universitas hasanuddin makassar, 2024.

A. Asrianda and I. Damayanti, “The Use Of Classification And Regression Tree (CART) Algorithm In Predicting Rice Yield Based On The Amount Of Subsidized Fertilizer Usage In Lokseumawe City,” J. Multimed. dan Teknol. Inf., vol. 6, no. 02, pp. 183–198, 2024.

M. Faisal, N. Nurdin, F. Fajriana, and Z. Fitri, “Information and communication technology competencies clustering for students for vocational high school students using K-Means clustering algorithm,” Int. J. Eng. Sci. Inf. Technol, vol. 2, no. 3, pp. 111–120, 2022.

R. Ummami and B. Winarno, “Gaussian Mixture Model dengan Algoritme Expectation Maximization untuk Pengelompokan Data Distribusi Air Bersih di Jawa Barat,” Prism. Pros. Semin. Nas. Mat., vol. 6, pp. 745–750, 2023.

R. P. Fitri, A. N. Rahma, R. Selviana, A. Ramadanti, S. N. Adinda, and E. Amelia, “Edukasi Pencegahan Stunting pada Anak di Desa Karya Indah,” NuCSJo Nusant. Community Serv. J., vol. 1, no. 3, pp. 195–199, 2025.

D. Aprilia, “Perbedaan Risiko Kejadian Stunting Berdasarkan Umur Dan Jenis Kelamin,” J. Kebidanan, vol. 11, no. 2, pp. 25–31, 2022.

H. Madania Insani, “Stunting in Indonesia: Why is it Increasing? A R T I C L E I N F O,” J. Appl. Food Nutr., vol. 1, no. 2, pp. 67–72, 2020.

Y. F. P. Wangge, I. A. T. Hinga, A. B. Sir, and Y. K. Syamruth, “Analisis Faktor Risiko Kejadian Stunting pada Balita di Wilayah Kerja Puskesmas Ngalupolo Kabupaten Ende,” J. Bid. Ilmu Kesehat., vol. 15, no. 1, pp. 28–43, 2025.

R. F. J, N. Huljannah, and T. N. Rochmah, “Stunting Prevention Program in Indonesia: A SYSTEMATIC REVIEW,” Media Gizi Indones., vol. 17, no. 3, pp. 281–292, 2022, doi: 10.20473/mgi.v17i3.281-292.

W. Rahmatika, Y. Bawono, and R. Rosyidah, “Cuci Tangan Pakai Sabun sebagai Upaya Pencegahan Stunting di Desa Tajungan Kecamatan Kamal Kabupaten Bangkalan,” in PROSIDING SEMINAR NASIONAL PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT (SNPP), 2023, vol. 2, pp. 74–83.

D. N. Pakha et al., “Edukasi Pencegahan Stunting sebagai Upaya Penekanan Angka Stunting di Desa Trombol Sragen,” vol. 5, no. 1, pp. 1–9, 2025.

A. T. Mulyani, M. A. Khairinisa, and A. Khatib, “Understanding Stunting : Impact , Causes , and Strategy to Accelerate Stunting Reduction — A Narrative Review,” 2025.

P. Priati et al., “PENGGUNAAN TEKNIK DATA MINING DALAM ANALISIS IZIN TINGGAL KEIMIGRASIAN,” 2024.

V. Gómez-Rubio, “Handbook of Mixture Analysis,” J. R. Stat. Soc. Ser. A Stat. Soc., vol. 184, no. 2, pp. 787–788, 2021, doi: 10.1111/rssa.12673.

B. Pani?, J. Klemenc, and M. Nagode, “Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation,” Mathematics, 2020, doi: https://doi.org/10.3390/math8030373.

K. Rahmadani, “Segmentasi customer lifetime value menggunakan metode hubungan length recency frequency monetary Dan algoritma clustering expectation maximization.” Universitas Islam Negeri Maulana Malik Ibrahim, 2024.

U. Rizqi, “Gaussian Mixture Model dengan Algoritme Expectation Maximization untuk Pengelompokan Data Distribusi Air Bersih di Jawa Barat,” in PRISMA, Prosiding Seminar Nasional Matematika, 2023, vol. 6, pp. 745–750.

Additional Files

Published

2025-06-30

How to Cite

Delianda, A., Asrianda, A., & Fitri, Z. (2025). Klasterisasi Data Stunting Pada Balita Di Puskesmas Xyz Dengan Menggunakan Metode Mixture Modelling. JURNAL RISET KOMPUTER (JURIKOM), 12(3), 251–261. https://doi.org/10.30865/jurikom.v12i3.8580

Issue

Section

Articles