Analisis Sentimen Publik Terkait Kekerasan Seksual di Indonesia dengan Algoritma Naïve Bayes dan SVM

Authors

DOI:

https://doi.org/10.30865/jurikom.v12i3.8556

Keywords:

Sentiment Analysis, Instagram, Sexual Violence, Naïve Bayes, Support Vector Machine (SVM), X (Twitter)

Abstract

Semakin meningkatnya kasus kekerasan seksual yang terjadi di Indonesia, dan media sosial merupakan ruang bagi masyarakat Indonesia untuk mengekspresikan pendapat. The increasing number of sexual violence cases in Indonesia, along with the role of social media as a space for the public to express their opinions, forms the basis for this research. The study aims to classify various types of public sentiment expressed on X (formerly Twitter) and Instagram comments by applying two algorithms for comparison: Naïve Bayes and SVM. Several processes carried out, including data collection from social media, data preprocessing, manual labeling, and the implementation of both algorithms on the processed dataset. The data sources utilized are posts written in Indonesian on X (Twitter) and Instagram, focusing on issues of sexual violence in Indonesia. The sentiment analysis results were grouped into three main categories: positive, negative, and neutral. The outcomes show that SVM achieved an accuracy of 82.17% using an 80:20 data split without applying GridSearch for optimization. The SVM results outperformed those of Naïve Bayes, which achieved an accuracy of 78.92%. This investigation leads to the conclusion that SVM is more optimal in analyzing public sentiment related to sexual violence in Indonesia compared to Naïve Bayes. The sentiment analysis results from social media regarding sexual violence in Indonesia show that the majority of sentiments are neutral, with the dataset being dominated by informative content, case reports without emotional expression, and off-topic comments

References

H. Firmansyah, “Isu Kekerasan Seksual Masih Menjadi Perhatian Serius di Masyarakat,” www.rri.co.id, 2023. https://www.rri.co.id/nasional/468859/isu-kekerasan-seksual-masih-menjadi-perhatian-serius-di-masyarakat (accessed Nov. 01, 2024).

SIMFONI-PPA, “Data yang tersaji adalah,” kekerasan.kemenpppa.go.id, 2024. https://kekerasan.kemenpppa.go.id/ringkasan

Kompasiana, “Menghadapi Kenyataan, Meningkatnya Kasus Pelecehan dan Kekerasan Seksual pada Perempuan,” www.kompasiana.com, 2024. https://www.kompasiana.com/radenraradyahayunabila4193/6742b915ed641533a6102862/menghadapi-kenyataan-meningkatnya-kasus-pelecehan-dan-kekerasan-seksual-pada-perempuan

N. I. Purnayasa, I. M. A. D. Suarjaya, and I. P. A. Dharmaadi, “Analysis of Cyberbullying Level using Support Vector Machine Method,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 10, no. 2, p. 81, 2022, doi: 10.24843/jim.2022.v10.i02.p01.

Kompasiana, “Media Sosial sebagai Wadah dalam Upaya Meningkatkan Kesadaran akan Isu Lingkungan,” www.kompasiana.com, 2024. https://www.kompasiana.com/nafraalyssasyahbaniah2727/66f6ce2f34777c5c4a0fea32/media-sosial-sebagai-wadah-dalam-upaya-meningkatkan-kesadaran-akan-isu-lingkungan

Rina Noviana and Isram Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” J. Tek. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: 10.56127/jts.v2i2.791.

M. Derryl Qinanda, A. Nilogiri, and T. Timur, “Sentimen Pada Komentar Youtube Tentang Pencegahan Dan Penanganan Kekerasan Seksual Pada Permendikbud Berbasis Naïve Bayes Dan Support Vector Machine,” vol. 7, no. 2, pp. 114–121, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JUSTINDO

W. Ningsih, B. Alfianda, R. Rahmaddeni, and D. Wulandari, “Perbandingan Algoritma SVM dan Naïve Bayes dalam Analisis Sentimen Twitter pada Penggunaan Mobil Listrik di Indonesia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 556–562, 2024, doi: 10.57152/malcom.v4i2.1253.

F. N. Hidayat and S. Sugiyono, “Analisis Sentimen Masyarakat Terhadap Perekrutan Pppk Pada Twitter Dengan Metode Naive Bayes Dan Support Vector Machine,” J. Sains dan Teknol., vol. 5, no. 2, pp. 665–672, 2023, doi: 10.55338/saintek.v5i2.1359.

D. Alita and R. A. Shodiqin, “Sentimen Analisis Vaksin Covid-19 Menggunakan Naive Bayes Dan Support Vector Machine,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, pp. 1–12, 2023, doi: 10.58602/jaiti.v1i1.20.

A. Pamungkas, “Memahami Algoritma Naive Bayes: Konsep dan Penerapan,” pemrogramanmatlab.com, 2024. https://pemrogramanmatlab.com/2023/08/09/memahami-algoritma-naive-bayes-konsep-dan-penerapan/

IBM, “Apa itu support vector machines (SVM)?,” www.ibm.com, 2023. https://www.ibm.com/id-id/topics/support-vector-machine#:~:text=Support vector machines %28SVM%29 adalah algoritma machine learning,memaksimalkan jarak antara setiap kelas dalam ruang N-dimensi.

N. N. Pandika Pinata, I. M. Sukarsa, and N. K. Dwi Rusjayanthi, “Prediksi Kecelakaan Lalu Lintas di Bali dengan XGBoost pada Python,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 8, no. 3, p. 188, 2020, doi: 10.24843/jim.2020.v08.i03.p04.

N. S. Marga, A. R. Isnain, and D. Alita, “Terhadap Kasus Corona Menggunakan Metode Naive Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 2, no. 4, pp. 453–463, 2020.

P. A. Setiawati, I. M. A. D. Suarjaya, and I. N. P. Trisna, “Sentiment Analysis of Unemployment in Indonesia During and Post COVID-19 on X (Twitter) Using Naïve Bayes and Support Vector Machine,” J. Inf. Syst. Informatics, vol. 6, no. 2, pp. 662–675, 2024, doi: 10.51519/journalisi.v6i2.713.

M. F. Zulfikar et al., “Sistem Monitoring Keadaan Darurat Berdasarkan Caption Instagram Menggunakan Naïve Bayes Dengan Jarak Levenshtein,” vol. 8, pp. 1–12, 2025.

D. Miner, “Data Miner is the most powerful web scraping tool for professional data miners,” dataminer.io, 2021. https://dataminer.io/

S. K. A. Firdausi, “Data Preprocessing Adalah: Pengertian, Manfaat, & Tahapannya,” dibimbing.id, 2024. https://dibimbing.id/blog/detail/data-preprocessing-adalah-pengertian-manfaat-tahapannya (accessed Sep. 10, 2024).

G. A. M. Kukuh Jaluwana, Gusti Made Arya Sasmita, and I Made Agus Dwi Suarjaya, “Analysis of Public Sentiment Towards Goverment Efforts to Break the Chain of Covid-19 Transmission in Indonesia Using CNN and Bidirectional LSTM,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 511–520, 2022, doi: 10.29207/resti.v6i4.4055.

W. I. Maulana, “Mengurai Metrics: Apa Itu Presisi, Recall, dan Bagaimana Menginterpretasikannya.,” medium.com, 2023. https://medium.com/himit-pens/mengurai-metrics-apa-itu-presisi-recall-dan-bagaimana-menginterpretasikannya-a15e7f90411e#:~:text=Presisi atau biasa disebut Precision adalah metrik yang,positif yang benar dengan jumlah total prediksi positif (accessed Jan. 18, 2024).

D. N. Avianty, P. I. G. P. S. Wijaya, and F. Bimantoro, “The Comparison of SVM and ANN Classifier for COVID-19 Prediction,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 13, no. 2, p. 128, 2022, doi: 10.24843/lkjiti.2022.v13.i02.p06.

Em. D. RI, “Siswi SMP di Lampung Alami Kekerasan Seksual, Adde Rosi: Tangkap Tiga Pelaku Buron!,” emedia.dpr.go.id, 2024. https://emedia.dpr.go.id/2024/05/05/siswi-smp-di-lampung-alami-kekerasan-seksual-adde-rosi-tangkap-tiga-pelaku-buron/ (accessed Apr. 16, 2025).

KOMPASTV, “Pelaku Pelecehan Seksual Terhadap Anak Disabilitas di Tamansari Terancam 15 Tahun Penjara!,” www.kompas.tv, 2022. https://www.kompas.tv/amp/video/290575/pelaku-pelecehan-seksual-terhadap-anak-disabilitas-di-tamansari-terancam-15-tahun-penjara (accessed Apr. 17, 2025).

KumparanNEWS, “Cabuli dan Aniaya Balita, Pria di Bali Divonis Penjara 13 Tahun dan Denda Rp 5 M,” kumparan.com, 2022. https://kumparan.com/kumparannews/1zItoLg4tta/full?utm_source=Mobile&utm_medium=tw&shareID=xOtPwmTDbY3j (accessed Apr. 17, 2025).

Additional Files

Published

2025-06-30

How to Cite

Nalista, N. M. N., Mandenni, N. M. I. M., & Suarjaya, I. M. A. D. (2025). Analisis Sentimen Publik Terkait Kekerasan Seksual di Indonesia dengan Algoritma Naïve Bayes dan SVM. JURNAL RISET KOMPUTER (JURIKOM), 12(3), 172–184. https://doi.org/10.30865/jurikom.v12i3.8556

Issue

Section

Articles