Identifikasi Polaritas Sikap Pengguna Aplikasi X terhadap Coretax di Indonesia Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.30865/jurikom.v12i3.8548Keywords:
Coretax, Public Sentiment Analysis, Natural Language Processing, Indonesian Lexicon, Naïve BayesAbstract
The Core Tax Administration System (Coretax) was launched by the Directorate General of Taxes (DGT) in January 2025 as a technology-based integrated tax system. While its initial goal was to improve tax efficiency and compliance, Coretax faced technical challenges, including system errors, slow processing speed, and criticism from the public. The main platform used to address these challenges is the X app (formerly known as Twitter). This research aims to understand the public's views and responses to Coretax's services by analyzing user sentiment patterns seen on social media. The research identifies the polarity of user attitudes by utilizing natural language processing (NLP) and Naïve Bayes algorithms, applied to a dataset of 1,628 tweets collected between January and March 2025. The analyzed data reflects a wide range of public reactions that include both positive and negative opinions towards the Coretax implementation, both in terms of functionality and ease of use. The results show that the model has an accuracy rate of 93.07%, a precision value of 95%, a recall value of 96%, and an F1-Score value of 96%. The results of this study are expected to be able to provide precise mapping related to changes in public opinion towards Coretax, so that it can be a valuable source of information for application developers, policy makers in the field of taxation, and analysis in the technology sector in responding to the needs and expectations of society in the digital era.
References
R. Harun, R. Ishak, and S. Panna, “Analisis Sentimen Opini Publik Pengguna Twitter Terhadap Kenaikan Harga BBM Menggunakan Algoritma Naïve Bayes,” J. Ilm. Ilmu Komput. Banthayo Lo Komput., vol. 2, no. 1, pp. 26–33, 2023, doi: 10.37195/balok.v2i1.414.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.
D. D. Tarigan, S. Iskandar, and A. Idrus, “Journal of Informatics and Data Science ( J-IDS ) Sentiment Analysis of Twitter Users Regarding Taxation Topics in,” vol. 03, no. 01, 2024, doi: 10.24114/j-ids.xxxxx.
S. H. Ramadhani and M. I. Wahyudin, “Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 4, pp. 526–534, 2022, doi: 10.35870/jtik.v6i4.530.
H. B. Rochmanto, G. Anuraga, M. Athoillah, A. Azies, and M. Naufal, “Klasifikasi Opini Publik terhadap Kenaikan PPN 12 % di Platform X menggunakan Multinomial Naïve Bayes,” UJMC, vol. 10, pp. 57–66, 2024.
F. I. Deni Wijaya, Rizki Adi Saputra, “Analisis Sentimen Ulasan Aplikasi Samsat Digital Nasional Pada Google Playstore Menggunakan Algoritma Naïve Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, pp. 2369–2380, 2024, doi: DOI 10.30865/klik.v4i4.1738.
S. H. W. Putra and D. Febriawan, “Analisis Sentimen Ulasan Aplikasi Digital Korlantas POLRI Menggunakan Naïve Bayes pada Google Play Store,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 4, pp. 1962–1971, 2024, doi: 10.30865/klik.v4i4.1600.
R. Firdaus, I. Asror, and A. Herdiani, “Lexicon-Based Sentiment Analysis of Indonesian Language Student Feedback Evaluation,” Indones. J. Comput., vol. 6, no. 1, pp. 1–12, 2021, doi: 10.34818/indojc.2021.6.1.408.
E. R. Subhiyakto, Y. P. Astuti, N. Alexander, and E. Kartikadarma, “Analisis Sentimen Menggunakan Metode Naïve Bayes Untuk Mengetahui Respon Masyarakat Terhadap Vaksinasi,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 02, pp. 179–188, 2022, doi: 10.46772/intech.v4i02.864.
A. R. Ismail and Raden Bagus Fajriya Hakim, “Implementasi Lexicon Based Untuk Analisis Sentimen Dalam Menentukan Rekomendasi Pantai Di DI Yogyakarta Berdasarkan Data Twitter,” Emerg. Stat. Data Sci. J., vol. 1, no. 1, pp. 37–46, 2023, doi: 10.20885/esds.vol1.iss.1.art5.
Q. Gao et al., “Identification of Orphan Genes in Unbalanced Datasets Based on Ensemble Learning,” Front. Genet., vol. 11, Oct. 2020, doi: 10.3389/fgene.2020.00820.
A. S. Almajid, “Multilayer Perceptron Optimization on Imbalanced Data Using SVM-SMOTE and One-Hot Encoding for Credit Card Default Prediction,” J. Adv. Inf. Syst. Technol., vol. 3, no. 2, pp. 67–74, Sep. 2022, doi: 10.15294/jaist.v3i2.57061.
O. I. Gifari, M. Adha, F. Freddy, and F. F. S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022, doi: 10.46229/jifotech.v2i1.330.
K. V. S. Toy, Y. A. Sari, and I. Cholissodin, “Analisis Sentimen Twitter menggunakan Metode Naive Bayes dengan Relevance Frequency Feature Selection (Studi Kasus: Opini Masyarakat mengenai Kebijakan New Normal),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 11, pp. 5068–5074, 2021, [Online]. Available: http://j-ptiik.ub.ac.id
P. Simanjuntak, H. Pangaribuan, and M. T. Syastra, “Data Mining Rekomendasi Pemakaian Skincare,” MEANS (Media Inf. Anal. dan Sist., no. February, pp. 80–83, 2021, doi: 10.54367/means.v6i1.1224.
Q. A. A’yuniyah and M. Reza, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Di Sma Negeri 15 Pekanbaru,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 39–45, 2023, doi: 10.57152/ijirse.v3i1.484.
A. A. Nopebrian, R. N. Shofa, and S. Yuliyanti, “Perbandingan Algoritma Pendekatan Supervised Learning Menggunakan Seleksi Fitur Chi-Square untuk Klasifikasi Status Kesehatan Jemaah Haji Comparison of Algorithms Supervised Learning Approach Using Chi-Square Feature Selection for Classification of Hajj P,” vol. 13, no. 1, pp. 166–172, 2025, doi: 10.26418/justin.v13i1.86639.
F. A. Irawan and D. A. Rochmah, “Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19,” J. Inform., vol. 9, no. 2, pp. 148–158, 2022, doi: 10.31294/inf.v9i2.13257.
N. F. Hilmi and F. Irwiensyah, “Analisis Sentimen Terhadap Aplikasi Tiktok Dari Ulasan Pada Google Playstore Menggunakan Metode Naïve Bayes,” Smatika J., vol. 14, no. 01, pp. 146–156, 2024, doi: 10.32664/smatika.v14i01.1210.
F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-Janua, no. December, pp. 391–394, 2017, doi: 10.1109/IALP.2017.8300625.
A. N. Rais, “Integrasi SMOTE Dan Ensemble AdaBoost Untuk Mengatasi Imbalance Class Pada Data Bank Direct Marketing,” J. Inform., vol. 6, no. 2, pp. 278–285, Sep. 2019, doi: 10.31311/ji.v6i2.6186.
M. Apriliyani, M. I. Musyaffaq, S. Nur’Aini, M. R. Handayani, and K. Umam, “Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes,” AITI, vol. 21, no. 2, pp. 298–311, Sep. 2024, doi: 10.24246/aiti.v21i2.298-311.
J. A. Rieuwpassa, S. Sugito, and T. Widiharih, “Implementasi Metode Naive Bayes Classifier Untuk Klasifikasi Sentimen Ulasan Pengguna Aplikasi Netflix Pada Google Play,” J. Gaussian, vol. 12, no. 3, pp. 362–371, 2024, doi: 10.14710/j.gauss.12.3.362-371.
F. N. A. A. H. W. R. S. S. N. A. D. P. Y. A. F. E. A. I. H. I. Y. S. Z. G. C. P. D. G. E. S. N. Ni Luh Wiwik Sri Rahayu Ginantra, 1.2 FullBook Data Mining dan Penerapan Algoritma. Yayasan Kita Menulis, 2021.
B. Z. Ramadhan, R. I. Adam, and I. Maulana, “Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 220–225, Dec. 2022, doi: 10.30871/jaic.v6i2.4725.
M. A. Muslim et al., Data Mining Algoritma C4.5 Disertai contoh kasus dan penerapannya dengan program computer, Pertama. Semarang, 2019.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dina Rahma Prasilda, Wenty Dwi Yuniarti, Maya Rini Handayani, Khothibul Umam

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



