Sistem Klasifikasi Tingkat Kerusakan Kunci Motor Menggunakan Random Forest dengan Hyperparameter Tuning

Authors

  • Jalu Wira Yuda Universitas Nahdlatul Ulama Sunan Giri, Bojonegoro https://orcid.org/0009-0009-2159-8033
  • Hastie Audytra Universitas Nahdlatul Ulama Sunan Giri, Bojonegoro
  • Nur Mahmudah Universitas Nahdlatul Ulama Sunan Giri, Bojonegoro

DOI:

https://doi.org/10.30865/jurikom.v12i2.8517

Keywords:

Kerusakan Kunci Motor, Machine Learning, Hyperparameter, Klasifikasi, Random Forest.

Abstract

Motorcycle key damage is often a problem for users, while the identification process still relies on technicians, which can be time-consuming and subjective. This study develops a classification system for motorcycle key damage levels using the Random Forest method with hyperparameter optimization. The dataset consists of 1,000 samples collected through observation and technician interviews, with data preprocessing using the SMOTE technique to address class imbalance. The model is trained and optimized with Random Forest using GridSearchCV and evaluated based on accuracy, precision, recall, and F1-score. The results show that the optimized Random Forest model achieves an accuracy of 85.5%, an improvement from 82% before tuning, enabling faster and more accurate identification of motorcycle key damage levels. The implementation of this system is expected to improve repair service efficiency and help users take action before the damage worsens.

References

A. Kurniawan, G. Atmaja, M. Nawawi, O. Hidayat, A. Latif, and R. E. Syahputra, “Sistem Pakar Diagnosa Kerusakan Mesin Sepeda Motor Dengan Menggunakan Metode Forward Chaining,” Teknik dan Multimedia, vol. 1, no. 2, 2023, [Online]. Available: https://scholar.google.com.

R. Mega Yulianto and R. Gunawan, “Dirgamaya Jurnal Manajemen dan Sistem Informasi Sistem Pakar Mendeteksi Kerusakan Komponen Kelistrikan Sepeda Motor Matic Injeksi Menggunakan Fuzzy Sugeno.”

R. Rakhmat Sani, Y. Ayu Pratiwi, S. Winarno, E. Devi Udayanti, and dan Farrikh Al Zami, “Analisis Perbandingan Algoritma Naive Bayes Classifier dan Support Vector Machine untuk Klasifikasi Hoax pada Berita Online Indonesia,” 2022.

A. Nugroho, “Analisa Splitting Criteria Pada Decision Tree dan Random Forest untuk Klasifikasi Evaluasi Kendaraan,” JSITIK: Jurnal Sistem Informasi dan Teknologi Informasi Komputer, vol. 1, no. 1, pp. 41–49, Dec. 2022, doi: 10.53624/jsitik.v1i1.154.

L. N. Qomariyati, S. Nurpadillah, N. F. Rosyidin, F. Sofyan, and L. R. Mubarak, “Jurnal FUSE-Teknik Elektro |Vol. 4 | No. 1 | Halaman 21-30,” 2024.

A. Nugroho, “Analisa Splitting Criteria Pada Decision Tree dan Random Forest untuk Klasifikasi Evaluasi Kendaraan,” JSITIK: Jurnal Sistem Informasi dan Teknologi Informasi Komputer, vol. 1, no. 1, pp. 41–49, Dec. 2022, doi: 10.53624/jsitik.v1i1.154.

N. Made Ika Marini Mandenni et al., “IMPLEMENTASI MACHINE LEARNING UNTUK MENINGKATKAN KUALITAS OPERASIONAL SERVICE KENDARAAN DENGAN METODE RANDOM FOREST DAN LOGISTIC REGRESSION IMPLEMENTATION OF MACHINE LEARNING TO IMPROVE THE QUALITY OF VEHICLE SERVICE OPERATIONS WITH RANDOM FOREST AND LOGISTIC REGRESSION METHODS,” Jurnal Praksis dan Dedikasi (JPDS) Oktober, vol. 7, no. 2, pp. 206–213, 2024, doi: 10.17977/um022v7i2p206-213.

L. Hakim, Z. Sari, A. Rizaldy Aristyo, and S. Pangestu, “Optimzing Android Program Malware Classification Using GridSearchCV Optimized Random Forest,” Computer Network, Computing, Electronics, and Control Journal, vol. 9, no. 2, pp. 173–180, 2024.

A. H. Mubarok, P. Pujiono, D. Setiawan, D. F. Wicaksono, and E. Rimawati, “Parameter Testing on Random Forest Algorithm for Stunting Prediction,” sinkron, vol. 9, no. 1, pp. 107–116, Jan. 2025, doi: 10.33395/sinkron.v9i1.14264.

A. P. Joshi and B. V. Patel, “Data Preprocessing: The Techniques for Preparing Clean and Quality Data for Data Analytics Process,” Oriental journal of computer science and technology, vol. 13, no. 0203, pp. 78–81, Jan. 2021, doi: 10.13005/ojcst13.0203.03.

M. P. J. van der Loo and E. de Jonge, “Data Validation,” in Wiley StatsRef: Statistics Reference Online, Wiley, 2020, pp. 1–7. doi: 10.1002/9781118445112.stat08255.

C. Herdian, A. Kamila, and I. G. Agung Musa Budidarma, “Studi Kasus Feature Engineering Untuk Data Teks: Perbandingan Label Encoding dan One-Hot Encoding Pada Metode Linear Regresi,” Technologia : Jurnal Ilmiah, vol. 15, no. 1, p. 93, Jan. 2024, doi: 10.31602/tji.v15i1.13457.

Y. A. Prasetyo, E. Utami, and A. Yaqin, “Pengaruh Komposisi Split Data Terhadap Performa Akurasi Analisis Sentimen Algoritma Naïve Bayes dan SVM,” Journal homepage: Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 2, 2024, doi: 10.33650/jeecom.v4i2.

A. Syukron, E. Saputro, and P. Widodo, “Penerapan Metode Smote Untuk Mengatasi Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung,” 2023. [Online]. Available: https://doi.org/10/25047/jtit.v10i1.312

I. Dataset, P. Kebangkrutan, P. Wilda, I. Sabilla, and C. B. Vista, “Jurnal Politeknik Caltex Riau,” 2021. [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/

D. P. Sinambela, H. Naparin, M. Zulfadhilah, and N. Hidayah, “Implementasi Algoritma Decision Tree dan Random Forest dalam Prediksi Perdarahan Pascasalin,” Jurnal Informasi dan Teknologi, vol. 5, no. 3, pp. 58–64, Sep. 2023, doi: 10.60083/jidt.v5i3.393.

H. Tantyoko, D. Kartika Sari, and A. R. Wijaya, “PREDIKSI POTENSIAL GEMPA BUMI INDONESIA MENGGUNAKAN METODE RANDOM FOREST DAN FEATURE SELECTION,” 2023. [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/indexHenriTantyoko|http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index|

N. Wuryani, S. Agustiani, I. Komputer, and N. Mandiri, “Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan,” Jurnal Teknik Komputer AMIK BSI, vol. 7, no. 2, 2021, doi: 10.31294/jtk.v4i2.

U. Sunarya and T. Haryanti, “Perbandingan Kinerja Algoritma Optimasi pada Metode Random Forest untuk Deteksi Kegagalan Jantung,” Jurnal Rekayasa Elektrika, vol. 18, no. 4, Dec. 2022, doi: 10.17529/jre.v18i4.26981.

L. Hakim, Z. Sari, A. Rizaldy Aristyo, and S. Pangestu, “Optimzing Android Program Malware Classification Using GridSearchCV Optimized Random Forest,” Computer Network, Computing, Electronics, and Control Journal, vol. 9, no. 2, pp. 173–180, 2024.

Additional Files

Published

2025-04-30

How to Cite

Yuda, J. W., Audytra, H., & Mahmudah, N. (2025). Sistem Klasifikasi Tingkat Kerusakan Kunci Motor Menggunakan Random Forest dengan Hyperparameter Tuning. JURNAL RISET KOMPUTER (JURIKOM), 12(2), 84–94. https://doi.org/10.30865/jurikom.v12i2.8517

Issue

Section

Articles