Implemantasi Pengenalan Wajah Dengan Metode Eigenface Pada Sistem Password Laptop

 (*)Zihan Noor Abdillah Mail (Fakultas Industri Kreatif & Telematika, Prodi Teknik Informatika, Universitas Trilogi, Jakarta Selatan, Indonesia, Indonesia)

(*) Corresponding Author

Abstract

System development technology encourages the development of current technology with home systems using facial recognition system. The study was conducted for homes in occupied homes secured by people who were not their owners. This stage uses the eigenface method. Eigenface to reduce the dimensional vector into a simpler vector (eigenvector). The introduction of this facial synt is much to use with Eigenface method, because for Eigenface method can provide a good level of accuracy, System that is able to achieve success rate of 84.6% with FAR (Incorrect Acceptance Rate) = 16.2%, FRR (Rejection Rate False) = 20% and EER (Mistake Rate) = 0.3. The Benefits of Using the System to Produce Others from Unfamiliar Persons To Know Our Home or Outside That We Limit, In This Method The Image of Face is posted in a significant feature significantly. Eigenface is a significant feature, since the feature is a major component of managing face images for training. The Eigenface method will point the spike point on the resulting image that matches the face in the database that makes them differentiated.

Full Text:

PDF


Article Metrics

Abstract view : 745 times
PDF - 401 times

References

Freund Y. & Schapire R, "A Short Introduction to Boosting," Journal of Japanese Sociaety for Artificial Intelegence, pp. 14(5)- 780, 1999.

Matthew A. Turk and Alex P. Pentland, Face Recognition Using Eigenfaces, IEEE, 1991, 2005.

Denny, M. 2012. Pengenalan Computer Vision dengan EmguCV di C#.Net. http://bisakomputer.com/pengenalancomputer-vision-dengan-emgucv-di-cnet/

Turk, M and Pentland, A. 1991. Face Recognition Using Eigenfaces. http://www.cs.ucsb.edu/~mturk/Papers/m turk-CVPR91.pdf

Suprianto, D. 2013. Sistem Pengenalan Wajah Secara Real-Time, dengan Adaboost, Eigenface PCA & MySql. Malang. Universitas Brawijaya Malang

Al Fatta, Hanif. 2006. Sistem Presensi Karyawan Berbasis Pengenalan Wajah Dengan Algoritma Eigenface. Yogyakarta: STMIK AMIKOM

Brigida. 2012. Pengenalan Pola. http://informatika.web.id/pengenalanpola.htm

Rahim, M.A. 2013.Perancangan Aplikasi Pengenalan Wajah Menggunakan Metode Viola Jonnes.Medan: STMIK Budi Darma

Ni Wayan Marti, Pemanfaatan GUI Dalam Pengembangan Perangkat Lunak Pengenalan Citra Wajah Manusia menggunakan Metode Eigenface, 2010

Arie Wirawan Margono, Ibnu Gunawan, Resmana Lim, Pelacakan dan Pengenalan Wajah Menggunakan Metode Embedded Hidden Markov Models, Fakultas Teknologi Industri, Jurusan Teknik Informatika, Universitas Kristen Petra: 2004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 JURIKOM (Jurnal Riset Komputer)



JURIKOM (Jurnal Riset Komputer)
Publish by Universitas Budi Darma (before STMIK BUDI DARMA (P3M))
Email: jurikom.stmikbd@gmail.com

Creative Commons License
 This work is licensed under a Creative Commons Attribution 4.0 International.