Prediksi Kolektibilitas Kredit Anggota Dengan Algoritma C5.0 (Studi Kasus: Cu Damai Sejahtera Medan)

Authors

  • Ridawati Manik STMIK Budi Darma Jln. Sisingamangaraja No. 338
  • Pristiwanto Pristiwanto STMIK Budi Darma Jln. Sisingamangaraja No. 338
  • Kennedi Tambunan STMIK Budi Darma Jln. Sisingamangaraja No. 338

DOI:

https://doi.org/10.30865/jurikom.v5i2.654

Abstract

CU Damai Sejahtera is one of the cooperatives that move in the business of saving and loan. This has the same role as other large financial institutions such as banks in improving the economy of the community, in particular, is a member of CU itself. As a financial institution, bad credit is a major problem that is very influential on the sustainability of a financial institution. loss of earnings and the threat of profitability is a matter of caution in lending. Credit collectibility as one form of classification will facilitate the classification of each member data based on supporting criteria. The result of a decision tree that produces information in the form of a rule, will facilitate the analysis and retrieval later. With decision tree using C5.0 algorithm is expected to process information digging faster and optimal with bigger data capacity, so that errors generated in decision making more minimized.

References

Sani dan Dedy Suryadi, Pengantar Data Mining Menggali Pengetahuan dari Bongkahan Data, Yogyakarta: CV. Andi Offset,2010

Kusrini and Emha Taufiq, Algoritma Data Mining,Yogyakarta: CV. Andi Offset,2009

Detty,dkk, Get Easy Using Weka, Jakarta, Dapur Buku,2013

Kennedi Tampubolon, et al, “Implementasi Data Mining Algoritma Apriori Pada Sistem Persediaan Alat-alat Kesehatanâ€, Informasi dan Teknologi Ilmiah (INTI), volume : I, Nomor: 1,Oktober 2013

Han and Kamber, Data Mining and Concepts and Techniques,United Stated America:Diane Cerra, 2006

Iin Ernawati, 2008. Prediksi Status Keaktifan Studi Mahasiswa Dengan Algoritma C5.0 dan K-Nearest Neighbour [online]. Available: http://repository.ipb.ac.id/jspui/bitstream/123456789/9558/7/Bab%202%202008ier.pdf.iin

Holisatul Munawaroh, Et Al, “ Perbandingan Algoritma Id3 Dan C5.0 Dalam Indentifikasi Penjurusan Siswa SMAâ€, Jurnal Sarjana Teknik Informatika, Vol. 1, No. 1, Juni 2013

Difakar Singh, “An Algorithm to Construct Decision Tree for Machine Learning based on Similarity Factorâ€, International Journal of Aplications (0975 – 8887), Volume 111-No. 10, February 2015

E. Buulolo, “ALGORITMA APRIORI PADA DATA PENJUALAN DI SUPERMARKET,†in Seminar Nasional Inovasi dan Teknologi Informasi 2015 (SNITI), 2015, no. September 2015, pp. 4–7.

E. Buulolo, N. Silalahi, Fadlina, and R. Rahim, “C4.5 Algorithm To Predict the Impact of the Earthquake C4 . 5 Algorithm To Predict the Impact of the Earthquake,†Int. J. Eng. Res. Technol., vol. 6, no. 2, 2017.

H. Widayu, S. D. Nasution, N. Silalahi, and M. Mesran, “DATA MINING UNTUK MEMPREDIKSI JENIS TRANSAKSI NASABAH PADA KOPERASI SIMPAN PINJAM DENGAN ALGORITMA C4.5,†MEDIA Inform. BUDIDARMA, vol. 1, no. 2, Jun. 2017.

Dennis Aprilla, Et Al, Belajar Data Mining dengan RapidMiner,Jakarta ,2011

www.mediabpr.com diakses pada tanggal 25/05/2017

www.sc.com diakses pada tanggal 26/05/2017

Additional Files

Published

2018-04-04

How to Cite

Manik, R., Pristiwanto, P., & Tambunan, K. (2018). Prediksi Kolektibilitas Kredit Anggota Dengan Algoritma C5.0 (Studi Kasus: Cu Damai Sejahtera Medan). JURNAL RISET KOMPUTER (JURIKOM), 5(2), 151–160. https://doi.org/10.30865/jurikom.v5i2.654

Issue

Section

Articles