Analisis Trend Berita Media Online di Masa Pandemi Covid-19 dengan Metode Monte Carlo
DOI:
https://doi.org/10.30865/jurikom.v10i2.6107Keywords:
Online Media Coverage, Data Mining, Covid-19, Monte Carlo Analysis, News TrendsAbstract
The News reports for online media always follows the trending issues that are actually predictable. In general, online media news apart from presenting various events that have occurred, also focuses on reporting issues which is of concern to the public. During the Covid-19 pandemic, almost all mass media, including online media, continued to report various news about the Covid-19 case and its impact on society. The problem is how to understand the news accumulation in a certain period of time to find out the trend in reporting on Covid-19. Because the news has resulted in a huge accumulation of data related to Covid-19 news which can be used to build data mining. The purpose of this study is to analyze online media coverage during the Covid-19 pandemic using the Monte Carlo method to find out news trends. The process uses a data mining approach by collecting a lot of data from existing reports and processing the data to find important information from the data set. The data used to analyze news trends were taken from the main news on the online media Suarapembaruan.com for seven (7) months and processed using knowledge discovery in database (KDD) techniques. The Monte Carlo method is applied to data mining to calculate probability values or possible values that will occur in the future. The results of this study indicate that the trend of news related to Covid-19 in the future will be dominated by News on the Handling of Covid-19 with a trend percentage rate of 23.12 percent. Meanwhile, the news about the Covid-19 Case and the Impact of Covid-19 was getting lower with a trend rate of 21.82 percent and 19.22 percent. Meanwhile, The Other News with related to Covid-19 has a higher trend percentage of 35.84 percent
References
N. Mona, “Untuk Meminimalisasi Efek Contagious ( Kasus Penyebaran Virus Corona Di Indonesia),†J. Sos. Hum. Terap., 2020.
A. Aziz, “Update Corona 9 April: 3.293 Positif, 280 Meninggal & 252 Sembuh,†2020. https://tirto.id/update-corona-9-april-3293-positif-280-meninggal-252-sembuh-eL6Q (accessed Nov. 21, 2020).
“Situasi Covid-19 di Indonesia,†2020. https://covid19.go.id (accessed Nov. 21, 2020).
H. Tryaningsih, “EFEK PEMBERITAAN MEDIA MASSA TERHADAP PERSEPSI MASYARAKAT PAMEKASAN TENTANG VIRUS CORONA,†Orphanet J. Rare Dis., 2020.
R. D. Lestari, “QUALITY NEWS DAN POPULAR NEWS SEBAGAI TREND PEMBERITAAN MEDIA ONLINE (Studi Deskriptif Kualitatif Trend Pemberitaan Quality News dan Popular News pada Media Online Nasional di Indonesia Periode 2016),†CHANNEL J. Komun., 2017, doi: 10.12928/channel.v5i1.6355.
V. Juliswara and F. Muryanto, “Model Penanggulangan Hoax Mengenai Berita Covid 19 untuk Pengembangan Literasi Digital Masyarakat di Indonesia,†J. Ilm. Ilmu Pendidik., vol. 5, no. 7, pp. 2587–2596, 2022, doi: https://doi.org/10.54371/jiip.v5i7.725.
Agus Budi Raharjo, Z. Z. Dinanto, D. Sunaryono, and D. Purwitasari, “Prediksi Akumulasi Kasus Terkonfirmasi Covid-19 Di Indonesia Menggunakan Support Vector Regression,†J. Techno.Com, vol. 20, no. 3, pp. 372–381, 2021, doi: https://doi.org/10.33633/tc.v20i3.5062.
A. D. W. M. Sidik, I. H. Kusumah, A. Suryana, Edwinanto, M. Artiyasa, and A. P. Junfithrana, “Gambaran Umum Metode Klasifikasi Data Mining,†Fidel. J. Tek. Elektro, vol. 2, no. 2, pp. 34–38, 202AD, doi: https://doi.org/10.52005/fidelity.v2i2.111.
A. E. Wicaksono, “Implementasi Data Mining Dalam Pengelompokan Peserta Didik di Sekolah untuk Memprediksi Calon Penerima Beasiswa Dengan Menggunakan Algoritma K-Means (Studi Kasus SMA N 6 Bekasi),†Jur. Tek. Inform. Univ. Gunadarma, 2016.
H. D. Hutahaean, “Analisa Simulasi Monte Carlo Untuk Memprediksi Tingkat Kehadiran Mahasiswa dalam Perkuliahan,†J. Inform. Pelita Nusant., 2018.
M. Scharkow and M. Bachl, “How Measurement Error in Content Analysis and Self-Reported Media Use Leads to Minimal Media Effect Findings in Linkage Analyses: A Simulation Study,†Polit. Commun., 2017, doi: 10.1080/10584609.2016.1235640.
S. J. Fong, G. Li, N. Dey, R. G. Crespo, and E. Herrera-Viedma, “Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction,†Appl. Soft Comput. J., 2020, doi: 10.1016/j.asoc.2020.106282.
P. Ningtias, N. Sudiar, and H. Latiar, “Tren Topik Pemberitaan PASCA Pemilihan Presiden pada Portal Berita Online,†Info Bibl. J. Perpust. dan Ilmu Inf., 2020, doi: 10.24036/ib.v1i2.74.
B. Y. Geni, J. Santony, and Sumijan, “Prediksi Pendapatan Terbesar pada Penjualan Produk Cat dengan Menggunakan Metode Monte Carlo,†J. Inform. Ekon. Bisnis, 2019, doi: 10.37034/infeb.v1i4.5.
I. A. Nikmatun and I. Waspada, “IMPLEMENTASI DATA MINING UNTUK KLASIFIKASI MASA STUDI MAHASISWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 2, pp. 421–432, 2019, doi: https://doi.org/10.24176/simet.v10i2.2882.
J. Tamaela, E. Sediyono, and A. Setiawan, “Implementasi Metode Association Rule untuk Menganalisis Data Twitter tentang Badan Penyelenggara Jaminan Sosial dengan Algoritma Frequent Pattern-Growth,†J. Sist. Inf. BISNIS, 2018, doi: 10.21456/vol8iss1pp25-33.
Z. Yani and S. Sumijan, “Simulasi Algoritma Monte Carlo dalam Memprediksi Pendapatan Penjualan Produk Kalsium Tiens Syariah,†J. Inform. Ekon. Bisnis, 2020, doi: 10.37034/infeb.v3i1.58.
M. Ihksan, S. Defit, and Y. Yunus, “Monte Carlo Simulation in Predicting the Level of Culinary Sales Revenue (Case Study at Radja Minas Padang),†J. Inform. Ekon. Bisnis, 2021, doi: 10.37034/infeb.v3i1.63.
E. K. Suni, “ANALISIS DAN PERANCANGAN DATA WAREHOUSE UNTUK MENDUKUNG KEPUTUSAN REDAKSI TELEVISI MENGGUNAKAN METODE NINE-STEP KIMBALL,†J. Tek. Inform., 2018, doi: 10.15408/jti.v11i2.8560.
M. Akbar, C. Patmala, and D. Nurmalasari, “Ekstraksi Data pada Tabel dari Halaman Web Menggunakan Pohon Document Object Model,†J. Nas. Tek. Elektro dan Teknol. Inf., 2016, doi: 10.22146/jnteti.v5i4.273.
						


