Komparasi Kinerja DenseNet 121 dan MobileNet untuk Klasifikasi Citra Penyakit Daun Kentang

Authors

  • Umi Khultsum Universitas Bina Sarana Informatika, Pontianak
  • Ghofar Taufik Universitas Bina Sarana Informatika, Pontianak

DOI:

https://doi.org/10.30865/jurikom.v10i2.6047

Keywords:

Potato Leaf Disease, Convolution Neural Networks, Classification, DenseNet 121, Mobile-Net

Abstract

Potato plants are one of the plants that are included in horticultural commodities that are widely cultivated by farmers. Potatoes are the part produced from this plant and are the fourth largest agricultural food crop in the world after corn, wheat and rice. Potato plants are susceptible to attacks by various diseases in the leaf area, resulting in delays in potato production. This disease can be recognized by farmers visually, because the infected leaves have a different color and texture from healthy or fresh leaves. However, it was found that detection using the naked eye by farmers required more processing time and often gave inappropriate results. Methods in the field of image processing can be applied, namely by using pattern recognition or characteristics from the image of diseased potato leaves. Through this technique it is hoped that it can detect diseases on potato leaves correctly and accurately. Based on this description, this study aims to design a Convolution Neural Network (CNN) model and evaluate the performance of two architectures, namely DenseNet 121 and MobileNet. From the results of research conducted by the author on potato leaf disease images, it shows that the MobileNet algorithm is better than the DenseNet 12 algorithm. The MobileNet algorithm produces an accuracy of 98.00%, therefore the MobileNet algorithm has better performance for image classification of potato leaf disease

References

S. Nola, Budidaya Tanaman Kentang dan Peluang Bisnisnya. Elementa Media, 2021.

D. Tiwari, A. Sharma, M. Ashish, S. Patel, and N. Gangwar, “Potato Leaf Diseases Detection Using Deep Learning,†Proc. Int. Conf. Intell. Comput. Control Syst. (ICICCS 2020), pp. 461–466, 2020, doi: 10.1007/978-3-030-90321-3_18.

M. A. Iqbal and K. H. Talukder, “Detection of Potato Disease Using Image Segmentation and Machine Learning,†2020 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2020, pp. 43–47, 2020, doi: 10.1109/WiSPNET48689.2020.9198563.

U. Barman, D. Sahu, G. G. Barman, and J. Das, “Comparative Assessment of Deep Learning to Detect the Leaf Diseases of Potato based on Data Augmentation,†2020 Int. Conf. Comput. Perform. Eval. ComPE 2020, pp. 682–687, 2020, doi: 10.1109/ComPE49325.2020.9200015.

S. Birchfield, Imag Processing and Analysis. Boston: Cengage Learning, 2018.

Y. Heryadi and E. Irwansyah, Deep Learning Aplikasinya di Bidang Geos. Jawa Barat: PT Artifisia Wahana Informa Teknologi, 2020.

W. Wang, Y. Li, T. Zou, X. Wang, J. You, and Y. Luo, “A novel image classification approach via dense-mobilenet models,†Mob. Inf. Syst., vol. 2020, 2020, doi: 10.1155/2020/7602384.

M. A. R. Nishad, M. A. Mitu, and N. Jahan, “Predicting and Classifying Potato Leaf Disease using K-means Segmentation Techniques and Deep Learning Networks,†Procedia Comput. Sci., vol. 212, no. C, pp. 220–229, 2022, doi: 10.1016/j.procs.2022.11.006.

G. Chugh, A. Sharma, P. Choudhary, and R. Khanna, “POTATO LEAF DISEASE DETECTION USING INCEPTION V3,†Int. Res. J. Eng. Technol., vol. 07, no. 11, pp. 1363–1366, 2020, [Online]. Available: http://www.internetworkingindonesia.org/Issues/Vol12-No2-2020/iij-vol12-no2-2020.html.

A. Bangal, D. Pagar, H. Patil, and N. Pande, “Potato Leaf Disease Detection and Classification Using CNN,†Int. J. Res. Publ. Rev. J. homepage www.ijrpr.com, vol. 3, no. 5, pp. 1510–1515, 2022, [Online]. Available: www.ijrpr.com.

U. Suttapakti and A. Bunpeng, “Potato Leaf Disease Classification Based on Distinct Color and Texture Feature Extraction,†Proc. - 2019 19th Int. Symp. Commun. Inf. Technol. Isc. 2019, pp. 82–85, 2019, doi: 10.1109/ISCIT.2019.8905128.

M. K. R. Asif, M. A. Rahman, and M. H. Hena, “CNN based disease detection approach on potato leaves,†Proc. 3rd Int. Conf. Intell. Sustain. Syst. ICISS 2020, pp. 428–432, 2020, doi: 10.1109/ICISS49785.2020.9316021.

M. Arsal, B. Agus Wardijono, and D. Anggraini, “Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN,†J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 1, pp. 55–63, 2020, doi: 10.25077/teknosi.v6i1.2020.55-63.

R. A. Sholihati, I. A. Sulistijono, A. Risnumawan, and E. Kusumawati, “Potato Leaf Disease Classification Using Deep Learning Approach,†IES 2020 - Int. Electron. Symp. Role Auton. Intell. Syst. Hum. Life Comf., pp. 392–397, 2020, doi: 10.1109/IES50839.2020.9231784.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,†J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

Mulaab, Data Mining Konsep dan Apikasi. Malang: Media Nusa Kreatif, 2017.

Suyanto, Machine Learning Tingkat Dasar dan Lanjut. Bandung: Informatika, 2018.

A. S. Vellaichamy, A. Swaminathan, C. Varun, and K. S, “Multiple Plant Leaf Disease Classification Using Densenet-121 Architecture,†Int. J. Electr. Eng. Technol., vol. 12, no. 5, pp. 38–57, 2021, doi: 10.34218/ijeet.12.5.2021.005.

A. D. Saputra, D. Hindarto, and H. Santoso, “Disease Classification on Rice Leaves using DenseNet121, DenseNet169, DenseNet201,†Sinkron, vol. 8, no. 1, pp. 48–55, 2023, doi: 10.33395/sinkron.v8i1.11906.

S. Bouguezzi, H. Ben Fredj, T. Belabed, C. Valderrama, H. Faiedh, and C. Souani, “An efficient fpga-based convolutional neural network for classification: Ad-mobilenet,†Electron., vol. 10, no. 18, pp. 1–22, 2021, doi: 10.3390/electronics10182272.

Additional Files

Published

2023-04-30

How to Cite

Khultsum, U., & Taufik, G. (2023). Komparasi Kinerja DenseNet 121 dan MobileNet untuk Klasifikasi Citra Penyakit Daun Kentang. JURNAL RISET KOMPUTER (JURIKOM), 10(2), 558−565. https://doi.org/10.30865/jurikom.v10i2.6047

Issue

Section

Articles