Analisis Sentimen HateSpeech pada Pengguna Layanan Twitter dengan Metode Naïve Bayes Classifier (NBC)

Authors

  • Murni Murni Universitas Ahmad Dahlan, Yogyakarta
  • Imam Riadi Universitas Ahmad Dahlan, Yogyakarta
  • Abdul Fadlil Universitas Ahmad Dahlan, Yogyakarta

DOI:

https://doi.org/10.30865/jurikom.v10i2.5984

Keywords:

Sentiment Analysis, HateSpeech, Twitter, Naïve Bayes Classifier

Abstract

In January 2023, Twitter users experienced a significant increase of 27.4% compared to the previous year. The social media platform Twitter is commonly used to share various types of information. One type of information frequently shared by users is Hate Speech. Hate Speech involves the dissemination of messages that nurture feelings of hatred and hostility towards specific individuals or groups, including ethnicity, religion, race, and other categories. Forms of Hate Speech encompass insults, defamation, blasphemy, provocation, incitement, and the spread of fake news. In order to address the potential for division and threats to Indonesia's unity, sentiment analysis capable of categorizing tweets as Hate Speech or Non-Hate Speech is necessary. This research aims to conduct sentiment analysis on Hate Speech tweets posted by Twitter users using the Naïve Bayes Classifier method. The dataset consists of 5000 samples processed using the Python programming language. Data processing stages involve preprocessing (including case folding, tokenization, stopword removal, normalization, and stemming), labeling, and assigning word weights (Term Weighting) using the Term Frequency (TF) and Inverse Document Frequency (IDF) methods. The data is then divided into training and testing sets, with three different data splits: 70% training and 30% testing, 30% training and 70% testing, and 50% training and 50% testing. Evaluation using the Confusion Matrix yields the highest accuracy of 81%, precision of 81%, recall of 100%, and F1-Score of 90% in the 70% training and 30% testing data split.

References

A. C. Mutia, “Pengguna Twitter di Indonesia Capai 24 Juta hingga Awal 2023, Peringkat Berapa di Dunia?,†Katadata Media Network, 2023. https://databoks.katadata.co.id/datapublish/2023/02/27/pengguna-twitter-di-indonesia-capai-24-juta-hingga-awal-2023-peringkat-berapa-di-dunia.

M. Hakiem, M. A. Fauzi, and Indriati, “Klasifikasi Ujaran Kebencian pada Twitter Menggunakan Metode Naïve Bayes Berbasis N-Gram Dengan Seleksi Fitur Information Gain,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2443–2451, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4682.

S. Afrizal, H. N. Irmanda, N. Falih, and I. N. Isnainiyah, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap,†Inform. J. Ilmu Komput., vol. 15, no. 3, p. 157, 2020, doi: 10.52958/iftk.v15i3.1454.

I. Riadi, R. Umar, and Fitriah, “Analisis Data Mining Sistem Inventory Menggunakan Algoritma Apriori,†Decod. J. Pendidik. Teknol. Inf., vol. 1, no. 1, pp. 33–42, 2021.

A. Yudhana, I. Riadi, and M. R. Djou, “Pengembangan Layanan Kependudukan Dan Pencatatan Sipil Menggunakan Algoritma Naïve Bayes,†JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1062, 2022, doi: 10.30865/jurikom.v9i4.4515.

S. Nurul, J. Fitriyyah, N. Safriadi, E. Esyudha, and P. #3, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,†(Jurnal Edukasi dan Penelit. Inform., vol. 5, no. 3, pp. 279–285, 2019, [Online]. Available: http://dx.doi.org/10.26418/jp.v5i3.34368.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 2, pp. 681–686, 2019, [Online]. Available: https://jurnal.umk.ac.id/index.php/simet/article/view/3487.

I. Riadi, R. Umar, and F. D. Aini, “Analisis Perbandingan Detection Traffic Anomaly Dengan Metode Naive Bayes Dan Support Vector Machine (Svm),†Ilk. J. Ilm., vol. 11, no. 1, pp. 17–24, 2019, doi: 10.33096/ilkom.v11i1.361.17-24.

Imam Riadi, Abdul Fadlil, and Izzan Julda D.E Purwadi Putra, “Mask Detection Analysis Using Haar Cascade and Naïve Bayes,†J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 7, no. 2, pp. 105–114, 2022, doi: 10.20527/jtiulm.v7i2.135.

D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,†J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.

P. S. M. Suryani, L. Linawati, and K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,†Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, p. 145, 2019, doi: 10.24843/mite.2019.v18i01.p22.

K. Antariksa, Y. S. Purnomo WP, and E. Ernawati, “Klasifikasi Ujaran Kebencian pada Cuitan dalam Bahasa Indonesia,†J. Buana Inform., vol. 10, no. 2, p. 164, 2019, doi: 10.24002/jbi.v10i2.2451.

N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,†J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, 2020, doi: 10.30864/jsi.v15i1.332.

M. Syarifuddin, “Analysis of Public Opinion Sentiment Regarding Covid-19 on Twitter Using the Naïve Bayes and Knn Method,†Inti Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020.

W. R. Samsir, Ambiyar, Verawardina Unung, edi Firman, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,†J. Media Inform. Budidarma, vol. 5, no. 1, p. 149, 2021, doi: 10.30865/mib.v5i1.2604.

F. Septianingrum, J. H. Jaman, and U. Enri, “Analisis Sentimen Pada Isu Vaksin Covid-19 di Indonesia dengan Metode Naive Bayes Classifier,†J. Media Inform. Budidarma, vol. 5, no. 4, p. 1431, 2021, doi: 10.30865/mib.v5i4.3260.

N. P. G. Naraswati, R. Nooraeni, D. C. Rosmilda, D. Desinta, F. Khairi, and R. Damaiyanti, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,†Sistemasi, vol. 10, no. 1, p. 222, 2021, doi: 10.32520/stmsi.v10i1.1179.

E. T. Handayani and A. Sulistiyawati, “Analisis Sentimen Respon Masyarakat Terhadap Kabar Harian Covid-19 Pada Twitter Kementerian Kesehatan Dengan Metode Klasifikasi Naive Bayes,†J. Teknol. dan Sist. Inf., vol. 2, no. 3, pp. 32–37, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.

F. Fathonah and A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,†J. Sains dan Inform., vol. 7, no. 2, pp. 155–164, 2021, doi: 10.34128/jsi.v7i2.331.

T. Krisdiyanto, “Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan PPKM pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers,†J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 7, no. 1, p. 32, 2021, doi: 10.24014/coreit.v7i1.12945.

N. Hardi, Y. Alkahfi, P. Handayani, W. Gata, and M. R. Firdaus, “Analisis Sentimen Physical Distancing pada Twitter Menggunakan Text Mining dengan Algoritma Naive Bayes Classifier,†Sistemasi, vol. 10, no. 1, p. 131, 2021, doi: 10.32520/stmsi.v10i1.1118.

A. Aziz and I. Fitri, “Analisis Sentimen Terhadap Kebijakan Pemerintah … Metode Naïve Bayes,†J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, p. 7806700, 2021.

S. Juanita, “Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes,†J. Media Inform. Budidarma, vol. 4, no. 3, p. 552, 2020, doi: 10.30865/mib.v4i3.2140.

A. Perdana, A. Hermawan, and D. Avianto, “Analisis Sentimen Terhadap Isu Penundaan Pemilu di Twitter Menggunakan Naive Bayes Clasifier,†J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 2, pp. 195–200, 2022, doi: 10.32736/sisfokom.v11i2.1412.

A. R. Syaifullah and Y. Sibaroni, “Hate Speech Hashtag Classification on Twitter Using the Hybrid Classifier Method,†JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 828, 2022, doi: 10.30865/jurikom.v9i4.4548.

I. Fahrur Rozi, A. Taufika Firdausi, and K. Islamiyah, “Analisis Sentimen Pada Twitter Mengenai Pasca Bencana Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram,†J. Inform. Polinema, vol. 6, no. 2, pp. 33–39, 2020, doi: 10.33795/jip.v6i2.316.

M. Hudha, E. Supriyati, and T. Listyorini, “Analisis Sentimen Pengguna Youtube Terhadap Tayangan #Matanajwamenantiterawan Dengan Metode Naïve Bayes Classifier,†JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 1, pp. 1–6, 2022, doi: 10.33387/jiko.v5i1.3376.

F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier,†J. Linguist. Komputasional, vol. 5, no. 1, p. 34, 2022, doi: 10.26418/jlk.v5i1.79.

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.

S. M. Salsabila, A. Alim Murtopo, and N. Fadhilah, “Analisis Sentimen Pelanggan Tokopedia Menggunakan Metode Naïve Bayes Classifier,†J. Minfo Polgan, vol. 11, no. 2, pp. 30–35, 2022, doi: 10.33395/jmp.v11i2.11640.

M. A. Djamaludin, A. Triayudi, and E. Mardiani, “Analisis Sentimen Tweet KRI Nanggala 402 di Twitter menggunakan Metode Naïve Bayes Classifier,†J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 6, no. 2, pp. 161–166, 2022, doi: 10.35870/jtik.v6i2.398.

Vynska Amalia Permadi, “Analisis Sentimen Menggunakan Algoritma Naive Bayes Terhadap Review Restoran di Singapura,†J. Buana Inform., vol. 11, pp. 141–151, 2020.

N. S. Wardani, A. Prahutama, and P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara Dengan Klasifikasi Naïve Bayes Untuk Model Bernoulli Dan Multinomial,†J. Gaussian, vol. 9, no. 3, pp. 237–246, 2020, doi: 10.14710/j.gauss.v9i3.27963.

R. Umar, I. Riadi, and P. Purwono, “Klasifikasi Kinerja Programmer pada Aktivitas Media Sosial dengan Metode Stochastic Gradient Descent,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 2, p. 55, 2020, doi: 10.31328/jointecs.v5i2.1324.

Additional Files

Published

2023-04-30

How to Cite

Murni, M., Riadi, I., & Fadlil, A. (2023). Analisis Sentimen HateSpeech pada Pengguna Layanan Twitter dengan Metode Naïve Bayes Classifier (NBC). JURNAL RISET KOMPUTER (JURIKOM), 10(2), 566−575. https://doi.org/10.30865/jurikom.v10i2.5984

Issue

Section

Articles