Analisis Sentimen Pemilu Indonesia Tahun 2024 Dari Media Sosial Twitter Menggunakan Python

Authors

  • Raditia Vindua Universitas Pamulang, Tangerang Selatan
  • Achmad Udin Zailani Universitas Pamulang, Tangerang Selatan

DOI:

https://doi.org/10.30865/jurikom.v10i2.5945

Keywords:

Sentiment Analysis, Indonesian General Election 2024, Preprocessing, Python, Twitter

Abstract

The general election of Indonesia in the upcoming 2024 will be an interesting topic for social media users, especially Twitter. Currently, Twitter is very influential in building sentiment, preferences, and public politics. So that people's Tweets can be used to see a picture of public opinion. There are various opinions of Twitter users with positive, neutral and negative sentiments. However, classifying the sentiments of Twitter users requires quite a lot of time and effort due to the large number of tweets found. The large number of incoming tweets regarding the election encourages the need for a method that helps to view public opinion effectively. By providing the textblob library, Python, which is a programming language, is able to classify tweet data and can be used to answer these problems. The tweet data is preprocessed first where there are two processes in the initial data, namely the cleaning and stemming processes. After that, a sentiment analysis was carried out to find out how the results of the classification related to public opinion from the 2024 elections and classify them into three classes, namely positive, neutral and negative using Python. The results of this study show that Python performs sentiment analysis with the results of the proportion of positive class sentiments of 40%, 52% neutral and 8% negative about the 2024 elections so that it can be concluded that Python can classify tweets from Twitter so that we can identify public opinion about elections. The general public of Indonesia in 2024 will have neutral opinions tend to be positive

References

J. Asshiddiqie, Pokok-Pokok Hukum Tata Negara Indonesia Pasca Reformasi, xviii. Jakarta: PT Bhuana Ilmu Populer, 2007. [Online]. Available: https://simpus.mkri.id/opac/detail-opac?id=6455

U. Anggota, D. Perwakilan, and D. P. Daerah, “Pemilihan Umum Serentak yang Berintegritas sebagai Pembaruan Demokrasi Indonesia General Elections with Integrity as an Update of Indonesian Democracy,†vol. 17, 2020.

A. S. Cahyono, “Anang Sugeng Cahyono, Pengaruh Media Sosial Terhadap Perubahan Sosial Masyarakat di Indonesia,†pp. 140–157.

N. Aggrawal, “Detection of Offensive Tweets: A Comparative Study,†Comput. Rev. J., vol. Vol 1 No 1, pp. 75–89, 2018.

L. F. S. Coletta, M. Ponti, E. R. Hruschka, A. Acharya, and J. Ghosh, “Combining clustering and active learning for the detection and learning of new image classes,†Neurocomputing, vol. 358, no. September, pp. 150–165, 2019, doi: 10.1016/j.neucom.2019.04.070.

S. Demokrasi and S. Hukum, “Kata Kunci : Sistem Demokrasi, Sudut Hukum, Ketatanegaraan.,†vol. VIII, pp. 134–147, 2015.

A. F. Hidayatullah, A. Aulia, F. Yusuf, K. P. Juwairi, R. Abida, and N. Nayoan, “Identifikasi konten kasar pada tweet bahasa Indonesia,†J. Linguist. Komputasional, vol. 2, no. 1, pp. 1–5, 2019, [Online]. Available: http://inacl.id/journal/index.php/jlk/article/view/15

A. Firdaus, W. I. Firdaus, P. Studi, T. Informatika, M. Digital, and P. N. Sriwijaya, “Text Mining,†vol. 13, no. 1, pp. 66–78, 2021.

E. Indrayuni and M. Wahyudi, “Penerapan Charachter N-Gram Untuk Sentiment Review Hotel Menggunakan Algoritma Naive Bayes,†Konfrensi Nas. Ilmu Pengetah. dan Teknol., pp. 88–93, 2015.

E. Cambria, S. Poria, F. Bisio, R. Bajpai, and I. Chaturvedi, “The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis,†Springer Int. Publ. Switz., pp. 3–22, 2015, [Online]. Available: https://www.researchgate.net/publication/273635373_The_CLSA_Model_A_Novel_Framework_for_Concept-Level_Sentiment_Analysis

L. D. Mahbubah and E. Zuliarso, “Analisa Sentimen Twitter Pada Pilpres 2019 Menggunakan Algoritma Naive Bayes,†Sintak, pp. 194–195, 2019, [Online]. Available: https://www.unisbank.ac.id/ojs/index.php/sintak/article/view/7585

S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,†J. Edukasi dan Penelit. Inform., vol. 5, no. 3, p. 279, 2019, doi: 10.26418/jp.v5i3.34368.

D. T. Lukmana, S. Subanti, and Y. Susanti, “Analisis Sentimen Terhadap Calon Presiden 2019 Dengan Support Vector Machine Di Twitter,†Semin. Nas. Penelit. Pendidik. Mat. 2019 UMT, no. 2002, pp. 154–160, 2019.

S. F. Pratama, R. Andrean, and A. Nugroho, “Analisis Sentimen Twitter Debat Calon Presiden Indonesia Menggunakan Metode Fined-Grained Sentiment Analysis,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 4, no. 2, p. 39, 2019, doi: 10.31328/jointecs.v4i2.1004.

W. Wibowo, B. S. S. Ulama, and H. Al Azies, “Modul-Prokom-DSB-versi-18-agustus-BW-compressed_2.pdf.†p. 135, 2020.

P. Pasek, O. Mahawardana, G. Arya, I. P. Agus, and E. Pratama, “Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap ‘ Figure Pemimpin ’ Menggunakan Python,†JITTER-Jurnal Ilm. Teknol. dan Komput., vol. 3, no. 1, 2022.

J. E. Sembodo, E. B. Setiawan, and A. Baizal, “Data Crawling Otomatis pada Twitter,†no. September, pp. 10–16, 2016, doi: 10.21108/INDOSC.2016.111.

A. T. J. H, “Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining,†pp. 1–9.

H. Nurrun Muchammad Shiddieqy, S. Paulus Insap, and W. Wing Wahyu, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,†Semin. Nas. Teknol. Inf. dan Komun., vol. 2016, no. March, pp. 57–64, 2016.

S. Bhatia, M. Sharma, and K. K. Bhatia, “Sentiment Analysis and Mining of Opinions,†Stud. Big Data, vol. 30, no. May, pp. 503–523, 2018, doi: 10.1007/978-3-319-60435-0_20.

N. Chadha, R. C. Gangwar, and R. Bedi, “Current Challenges and Application of Speech Recognition Process using Natural Language Processing: A Survey,†Int. J. Comput. Appl., vol. 131, no. 11, pp. 28–31, 2015, doi: 10.5120/ijca2015907471.

Additional Files

Published

2023-04-30

How to Cite

Vindua, R., & Zailani, A. U. (2023). Analisis Sentimen Pemilu Indonesia Tahun 2024 Dari Media Sosial Twitter Menggunakan Python. JURNAL RISET KOMPUTER (JURIKOM), 10(2), 479−487. https://doi.org/10.30865/jurikom.v10i2.5945

Issue

Section

Articles