Analisis Klasifikasi Perfomance KPI Salesman Menggunakan Metode Decision Tree Dan Naïve Bayes
DOI:
https://doi.org/10.30865/jurikom.v10i1.5628Keywords:
Technology, Achievement Results, Data Mining, Accuracy Rate, ClassificationAbstract
Along with the rapid and innovative development of technology, it has a big influence, especially for large companies. Unlike today, employees still use manual methods, as in determining the results of the achievement of the salesman. With the existence of technology can help various forms of problems in work, Making it easier to work with in a possibly short period of time makes time more efficient. This study aims to improve the performance of company employees who are prioritized to do work with the help of technology, or rather on a system so that it no longer does the work manually, also helps the company develop more with the existence of technology that will continue to be new. This study also aims to test the results of the level of accuracy using two methods, in order to find the best between the two methods on the data of the results of achieving salesman KPI. By using two methods, namely the decision tree method and naïve bayes. The classification of these two methods can test the results of how high the accuracy results are based on the processed data. Using more than one method to find which method is more influential, and better in those classifications. The results of this study show that the decision tree method got very good results in this study because it produced perfect accuracy, reached the 100% mark whereas by the naïve bayes method it was only 41%.
References
N. Feronica, S. Rivaldi, and Y. Rostianingsih, “Sales Management dalam Pengukuran Key Performance Indicator Dengan Menggunakan Metode C4.5 pada CV.X.â€
S. Bahri, A. Itb, and J. Dahlan, “IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI KETERLAMBATAN JAM MASUK KERJA MENGGUNAKAN ALGORITMA KLASIFIKASI,†vol. 1, no. 1, pp. 11–20, 2020.
S. Mulyana, F. Imansyah, and R. Yacoub, “ANALISIS TRAFIK PANGGILAN SUARAPADAJARINGAN GSMBERDASARKANPARAMETER KPI(KEY PERFORMANCE INDICATOR)â€.
M. Ghufroni An and A. Kurniawan, “Sistem Informasi Manajemen Berbasis Key Performance Indicator (KPI) dalam Mengukur Kinerja Guru,†2022.
R. Dwi, P. Magister, M. Fakultas, and E. Dan Bisnis, “PENGEMBANGAN GENERAL KEY PERFORMANCE INDICATORS UNTUK PENINGKATAN KINERJA PLATO FOUNDATION.â€
A. R. Wahidah et al., “SISTEM PENDUKUNG ANALISA KEY PERFORMANCE INDICATOR (KPI) MENGGUNAKAN METODE DATA MINING BERBASIS WEB PYTHON PROGRAMMING.â€
N. Rahman, “ANALISA ALGORITMA DECISION TREE DAN NAÃVE BAYESâ€.
N. Nurajijah and D. Riana, “Algoritma Naïve Bayes, Decision Tree, dan SVM untuk Klasifikasi Persetujuan Pembiayaan Nasabah Koperasi Syariah,†Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 2, pp. 77–82, Apr. 2019, doi: 10.14710/jtsiskom.7.2.2019.77-82.
B. S. Gandhi, D. A. Megawaty, and D. Alita, “APLIKASI MONITORING DAN PENENTUAN PERINGKAT KELAS MENGGUNAKAN NAÃVE BAYES CLASSIFIER,†Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 2, no. 1, pp. 54–63, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika
D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,†vol. 15, no. 1.
A. Nurwahidah, A. Sawal, M. T. Afifudin, and H. Sari, “PERANCANGAN KEY PERFORMANCE INDICATOR (KPI) SEBAGAI DASAR PENGUKURAN KINERJA KARYAWAN DI GUDANG SPAREPART PADA PT XYZ,†ARIKA, vol. 15, no. 2, 2021.
S. Alim, “IMPLEMENTASI ORANGE DATA MINING UNTUK KLASIFIKASI KELULUSAN MAHASISWA DENGAN MODEL K-NEAREST NEIGHBOR, DECISION TREE SERTA NAIVE BAYES ORANGE DATA MINING IMPLEMENTATION FOR STUDENT GRADUATION CLASSIFICATION USING K-NEAREST NEIGHBOR, DECISION TREE AND NAIVE BAYES MODELS.â€
B. Andriska, C. Permana, and I. K. Dewi, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,†Jurnal Informatika dan Teknologi, vol. 4, no. 1, 2021, doi: 10.29408/jit.v4i1.2994.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, p. 437, Apr. 2020, doi: 10.30865/mib.v4i2.2080.
D. Ainnur, R. Saragih, M. Safii, and D. Suhendro, “Penerapan Data Mining Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Sistem Informasi di Program Studi Sistem Informasi,†2021. [Online]. Available: https://ejurnal.seminar-id.com/index.php/josh/
A. Adha, Y. Yunus, and G. Nurcahyo, “Prediksi Potensi Relawan Pendonor Darah Menjadi Pendonor Darah Tetap dengan Penerapan Metode Klasifikasi Decision Tree,†Jurnal Informasi dan Teknologi, pp. 233–238, Aug. 2021, doi: 10.37034/jidt.v3i4.158.
H. Hafizan and A. N. Putri, “Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi Balita Di Kabupaten Simalungun,†2020.
N. Wijaya, M. Endah, and M. Feliati, “Seminar Nasional UNRIYO [Desember] [2020] 424 PENERAPAN ALGORITMA DECISION TREE C.45 UNTUK KLASIFIKASI DATA STATUS HUNI RUMAH REHABILITASI PASCA ERUPSI MERAPI APPLICATION OF C.45 DECISION TREE ALGORITHM FOR REHABILITATION HOUSEHOLD DATA CLASSIFICATION POST ERUPTION OF MERAPI.â€
T. Putra, A. Triayudi, and Andrianingsih., “Analisis Sentimen Pembelajaran Daring menggunakan Metode Naïve Bayes, KNN, dan Decision Tree,†Jurnal Teknologi Informasi dan Komunikasi), vol. 6, no. 1, p. 2022, 2022, doi: 10.35870/jti.
M. Yudhi Putra and D. Ismiyana Putri, “Pemanfaatan Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Kelas XI.â€
T. Sinta Peringkat et al., “KOMPARASI ALGORITMA DECISION TREE, NAIVE BAYES DAN K-NEAREST NEIGHBOR UNTUK MEMPREDIKSI MAHASISWA LULUS TEPAT WAKTUâ€, [Online]. Available: www.bri-institute.ac.id
 
						



 
 