Strategi Promosi untuk Meningkatkan Penjualan Kedai Kopi Desimal Menggunakan Algoritma K-Medoids Clustering
DOI:
https://doi.org/10.30865/jurikom.v10i1.5561Keywords:
Data Mining, K-Medoid, Rapidminer, Clustering, Coffee ShopAbstract
The Decimal coffee shop is a coffee shop located in the city of Karawang and is a coffee shop that is already busy with many customers, the Decimal coffee shop has been established since 2020 until now. Decimal coffee shop offers 35 diverse menu items, and sales can fluctuate, sometimes increasing and sometimes decreasing in the quality of the menu items sold. In this problem, sales data at Decimal coffee shops is not used to improve sales quality, the sales data is only used as an archive for the coffee shop, if the data is analyzed properly, it will be useful to determine which menu items are selling well and which are not selling well. By analyzing sales data, it will be possible to determine which menu needs to be improved in terms of sales. This information can then be used by the coffee shop as a reference in developing a promotional strategy aimed at increasing sales of the menu product. To find out how many menus are sold at Decimal coffee shops, a clustering study was carried out. This research was conducted by analyzing sales data in excel form, the K-Medoids method was used to create clusters based on product sales data that had been obtained from the Decimal Coffee Shop. From the clustering results, there are 3 clusters which are classified as high, medium, and low, and the accuracy is determined using the RapidMiner tool. Of the 35 items analyzed, the first cluster contains 18 items which are rated the highest, the second cluster contains 12 items which are classified as moderate, and the third cluster contains 5 items which are classified as the lowest. From these results there are 5 items on sales that are classified as low, therefore a promotional strategy is needed to increase the menu product.
References
P. Sianturi and R. Mahyuni, “Analisis Data Mining Menggunakan Algoritma K-Means Dalam Mengklasterkan Menu Makan Potensial Di Cafe Minum Kopi STMIK Triguna Dharma ** Program Studi Sistem Informasi, STMIK Triguna Dharma ***Program Studi Manajemen Informatika, STMIK Triguna Dharma,†J. CyberTech, vol. 3, no. 8, pp. 1412–1419, 2020, [Online]. Available: https://ojs.trigunadharma.ac.id/
Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,†J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.
S. N. Adila and N. Aziz, “Pengaruh Strategi Promosi Terhadap Keputusan Pembelian Yang Dimediasi Oleh Minat Beli Pada Konsumen Restoran Kfc Cabang Khatib Sulaiman Padang,†OSF Prepr., pp. 1–16, 2019.
A. A. Rifa’i, M. Fatchan, and Nanang Tedi Kurniadi, “Penerapan Algoritma K-Means Dalam Klasterisasi Penjualan Laptop,†J. SIGMA, vol. 1, no. 1, pp. 147–158, 2022, [Online]. Available: https://jurnal.pelitabangsa.ac.id/index.php/sigma/article/view/1440
W. A. Triyanto, “ALGORITMA K-MEDOIDS UNTUK PENENTUAN STRATEGI PEMASARAN PRODUK,†J. SIMETRIS, vol. 6, 2015.
S. F. Mulaki, N. Setiyawati, and A. F. Wijaya, “Analisis Data Mahasiswa Menggunakan Algoritma K-Means Clustering sebagai Dasar Pelaksana Promosi,†JBASE - J. Bus. Audit Inf. Syst., vol. 1, no. 2, pp. 30–39, 2018, doi: 10.30813/.v1i2.1259.
Agneresa, A. L. Hananto, S. S. Hilabi, A. Hananto, and Tukino, “Strategi Promosi Penerapan Data Mining Mahasiswa Baru Dengan Metode K-Means Clustering Agneresaa,†vol. 02, no. 02, pp. 25–34, 2022.
S. Silitonga, E. Irawan, S. Saifullah, M. R. Lubis, and I. Parlina, “Pengelompokan Nilai Akademik untuk Menentukan Kenaikan Kelas Menggunakan Algoritma K-Medoids,†Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 740, 2019, doi: 10.30645/senaris.v1i0.80.
A. Lia Hananto et al., “Analysis of Drug Data Mining with Clustering Technique Using K-Means Algorithm,†J. Phys. Conf. Ser., vol. 1908, no. 1, 2021, doi: 10.1088/1742-6596/1908/1/012024.
N. Zulfa, R. I. Auliya, and A. Zaenal, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,†J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
R. K. Purba and E. Bu’ulolo, “Implementasi Algoritma K-Medoids dalam Pengelompokan Mahasiswa yang Layak Mendapat Bantuan Uang Kuliah Tunggal,†INSOLOGI J. Sains dan Teknol., vol. 1, no. 2, pp. 79–86, 2022, doi: 10.55123/insologi.v1i2.195.
S. Nuraini, I. Gunawan, and W. Saputra, “Utilization of K-Medoids Algorithm for Klustering of Oil Palm Sprouts,†JOMLAI J. Mach. Learn. Artif. Intell., vol. 1, no. 1, pp. 11–22, 2022, doi: 10.55123/jomlai.v1i1.160.
T. Ibadah, D. Sumatera, D. Maulana, and S. Sundari, “Penerapan Algoritma K-Medoids Dalam Klasterisasi Penyebaran,†no. 1, pp. 51–59, 2022.
F. A. Bramasta and R. Helilintar, “Penerapan Data Mining Untuk Menentukan Strategi Penjualan Toko Sepatu,†Pros. SEMNAS INOTEK …, pp. 236–241, 2021, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/1135%0Ahttps://proceeding.unpkediri.ac.id/index.php/inotek/article/download/1135/736
D. Sepri, Y. Fimazid, S. Bangek Koto Tangah, and W. Sumatera, “Pengelompokan Penyebaran Covid-19 di Kota Padang Menggunakan Algoritma K-Medoids,†Inf. Syst. search J., vol. 1, no. 2, pp. 2775–4669, 2021.
S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. I. R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,†J. Teknol. Inf., vol. 4, no. 1, pp. 166–173, 2020, doi: 10.36294/jurti.v4i1.1296.
A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,†Sistemasi, vol. 10, no. 3, p. 516, 2021, doi: 10.32520/stmsi.v10i3.1332.
P. A. Kusuma and A. U. Firmansyah, “Deteksi Penyebaran Penyakit Tuberkulosis dengan Algoritma K-Means Clustering Menggunakan Rapid Miner Abstrak Penyebaran Penyakit TBC di Riau Menggunakan Rapid Miner â€. Dimana menurutnya mining memakai Metode Algoritma K-Means Clustering terbukti efektif u,†vol. 8, no. 2, pp. 41–54, 2022.
D. Jollyta, W. Ramdhan, and M. Zarlis, Konsep Data Mining Dan Penerapan. Deepublish, 2020.
E. Buulolo, Data Mining Untuk Perguruan Tinggi. Deepublish, 2020.



