Xiaomi Smartphone Sentiment Analysis on Twitter Social Media Using IndoBERT

Authors

  • Priyan Fadhil Supriyadi Telkom University, Bandung
  • Yuliant Sibaroni Telkom University, Bandung

DOI:

https://doi.org/10.30865/jurikom.v10i1.5540

Keywords:

Xiaomi Smartphones, Sentiment Analysis, BERT, IndoBERT, Twitter

Abstract

The extraordinary evolution of technology has resulted in smartphones becoming important devices in people's daily lives. As a result, today's smartphones impact many people's lives, with more and more people owning smartphones. One of the most popular smartphone products today is Xiaomi. This popularity cannot be separated from various opinions on Twitter. Twitter is a social media that makes it easy for people to express their opinions regarding Xiaomi products called sentiment. Sentiment analysis is needed to classify various opinions on Twitter into positive, neutral, and negative classes. This study aims to analyze the sentiment of public opinion on Xiaomi smartphone products on Twitter social media. The models used in this study were BERT and IndoBERT because they produced a good performance in previous studies. This study's stages of work consisted of collecting, preprocessing, separating training and test data, building models with BERT and IndoBERT to detect sentiment, and carrying out training and testing stages. Test results using IndoBERT get a very good accuracy value with an accuracy value above 90%. The sentiment classification results for Xiaomi smartphone products show that positive sentiment on batteries has a greater number, with a positive percentage of 78%. In comparison, neutral sentiment is 4%, and negative sentiment is 18%. Furthermore in the camera aspect, positive sentiment has a greater number, with a positive percentage of 68%, while neutral sentiment is 18% and negative sentiment is 14%. Moreover, on the screen, positive sentiment has more numbers, with a positive percentage of 67%, neutral sentiment is 10%, and negative sentiment is 23%. Last, in the ram aspect, positive sentiment has a greater number with a positive percentage of 76%, while neutral sentiment is 17% and negative sentiment is 7%. The highest number of positive sentiments is in the camera aspect, which has 1935 positive sentiments from 2830 data. The sentiment analysis results can be used as an evaluation along with insights for the Xiaomi company so that in the future, the company can maintain and even improve the quality of the aspects that smartphone users like about Xiaomi products, namely cameras.

References

Statista Research Department, “Smartphone penetration rate in Indonesia from 2017 to 2020 with forecasts until 2026,†www.statista.com, 2022. .

R. W. Utami, A. Jazuli, and T. Khotimah, “Analisis Sentimen Terhadap Xiaomi Indonesia Menggunakan Metode Naive Bayes,†Indones. J. Technol. Informatics Sci., vol. 3, no. 1, pp. 21–29, 2021, doi: 10.24176/ijtis.v3i1.7514.

canalys.com, “Global smartphone market shrinks 11% in Q1 2022 as regional headwinds bite,†https://canalys.com/, 2022. .

C. Troussas, M. Virvou, K. J. Espinosa, K. Llaguno, and J. Caro, “Sentiment analysis of Facebook statuses using Naive Bayes Classifier for language learning,†IISA 2013 - 4th Int. Conf. Information, Intell. Syst. Appl., pp. 198–205, 2013, doi: 10.1109/IISA.2013.6623713.

G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,†Integer J., vol. 2, no. 1, pp. 32–41, 2017.

T. Nasukawa and J. Yi, “Sentiment Analysis: Capturing Favorability Using Natural Language Processing,†Proc. 2nd Int. Conf. Knowl. Capture, pp. 70–77, 2003.

N. M. S. Hadna, P. I. Santosa, and W. W. Winarno, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,†Semin. Nas. Teknol. Inf. dan Komun. 2016 (SENTIKA 2016), 2016.

B. Liu, “Sentiment Analysis and Opinion Mining,†Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1–167, May 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.

I. Sunni and D. H. Widyantoro, “Analisis Sentimen dan Ekstraksi Topik Penentu Sentimen pada Opini Terhadap Tokoh Publik,†J. Sarj. Inst. Teknol. Bandung Bid. Tek. Elektro dan Inform., vol. 1, no. 2, pp. 200–206, 2012.

E. Marrese-Taylor, J. D. Velásquez, F. Bravo-Marquez, and Y. Matsuo, “Identifying customer preferences about tourism products using an aspect-based opinion mining approach,†Procedia Comput. Sci., vol. 22, pp. 182–191, 2013, doi: 10.1016/j.procs.2013.09.094.

C. Huang, A. Trabelsi, and O. R. Zaïane, “ANA at SemEval-2019 task 3: Contextual emotion detection in conversations through hierarchical LSTMs and BERT,†NAACL HLT 2019 - Int. Work. Semant. Eval. SemEval 2019, Proc. 13th Work., pp. 49–53, 2019, doi: 10.18653/v1/s19-2006.

A. L. Bagus and D. H. Fudholi, “KLASIFIKASI EMOSI PADA TEKS DENGAN MENGGUNAKAN METODE DEEP LEARNING,†Syntax Lit. J. Ilm. Indones., vol. 6, no. 1, 2021.

Y. Peng, S. Yan, and Z. Lu, “Transfer learning in biomedical natural language processing: An evaluation of BERT and ELMo on ten benchmarking datasets,†Proc. ofthe BioNLP 2019 Work., pp. 58–65, 2019, doi: 10.18653/v1/w19-5006.

W. Fang, H. Luo, S. Xu, P. E. D. Love, Z. Lu, and C. Ye, “Automated text classification of near-misses from safety reports: An improved deep learning approach,†Adv. Eng. Informatics, vol. 44, no. February, p. 101060, 2020, doi: 10.1016/j.aei.2020.101060.

A. Vaswani et al., “Attention Is All You Need,†31st Conf. Neural Inf. Process. Syst. (NIPS 2017), Long Beach, CA, USA, 2017, doi: 10.1109/2943.974352.

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,†NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.

J. H. Tandijaya, Liliana, and I. Sugiarto, “Klasifikasi dalam Pembuatan Portal Berita Online dengan Menggunakan Metode BERT,†J. Infra, vol. 9, no. 2, pp. 320–325, 2021.

F. A. Pratama and A. Romadhony, “Identifikasi Komentar Toksik Dengan BERT,†e-Proceeding Eng., vol. 7, no. 2, pp. 1–9, 2020.

M. I. Rahajeng and A. Purwarianti, “Indonesian Question Answering System for Factoid Questions using Face Beauty Products Knowledge Graph,†J. Linguist. Komputasional, vol. 4, no. 2, pp. 59–63, 2021.

F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,†arXiv Prepr. arXiv2011.00677., 2020, doi: 10.18653/v1/2020.coling-main.66.

R. M. R. W. P. K. Atmaja and W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirectional Encoder Representations from Transformers),†J. Emerg. Inf. Syst. Bus. Intell., vol. 02, no. 03, p. 2021, 2021.

C. A. Putri, Adiwijaya, and S. Al Faraby, “Analisis Sentimen Review Film Berbahasa Inggris Dengan Pendekatan Bidirectional Encoder Representations from Transformers,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 2, pp. 181–193, 2020, doi: 10.35957/jatisi.v6i2.206.

K. S. Nugroho, A. Y. Sukmadewa, H. Wuswilahaken Dw, F. A. Bachtiar, and N. Yudistira, “BERT Fine-Tuning for Sentiment Analysis on Indonesian Mobile Apps Reviews,†ACM Int. Conf. Proceeding Ser., pp. 258–264, 2021, doi: 10.1145/3479645.3479679.

I. P. A. M. Utama, S. S. Prasetyowati, and Y. Sibaroni, “Multi-Aspect Sentiment Analysis Hotel Review Using RF, SVM, and Naïve Bayes based Hybrid Classifier,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 630, 2021, doi: 10.30865/mib.v5i2.2959.

Y. Goldberg, Neural Network Methods in Natural Language Processing. 2017.

Christopher D.Manning, “Speech and Language Processing: An introduction to natural language processing,†SPEECH Lang. Process. An Introd. to Nat. Lang. Process. Comput. Linguist. Speech Recognit., pp. 1–18, 2021, [Online]. Available: http://www.cs.colorado.edu/~martin/slp.html.

A. Kulkarni and A. Shivananda, Natural Language Processing Recipes. 2019.

H. M and S. M.N, “A Review on Evaluation Metrics for Data Classification Evaluations,†Int. J. Data Min. Knowl. Manag. Process, vol. 5, no. 2, pp. 01–11, 2015, doi: 10.5121/ijdkp.2015.5201.

X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved method to construct basic probability assignment based on the confusion matrix for classification problem,†Inf. Sci. (Ny)., vol. 340–341, pp. 250–261, 2016, doi: 10.1016/j.ins.2016.01.033.

K. S. Nugroho, “Validasi Model Klasifikasi Machine Learning pada RapidMiner,†medium.com, 2020. https://ksnugroho.medium.com/validasi-model-machine-learning-pada-rapidminer-50be0080df14.

Additional Files

Published

2023-02-17

How to Cite

Supriyadi, P. F., & Sibaroni, Y. (2023). Xiaomi Smartphone Sentiment Analysis on Twitter Social Media Using IndoBERT. JURNAL RISET KOMPUTER (JURIKOM), 10(1), 19−30. https://doi.org/10.30865/jurikom.v10i1.5540