Klasifikasi Tingkat Keberhasilan Produksi Ayam Broiler di Riau Menggunakan Algoritma C4.5
DOI:
https://doi.org/10.30865/jurikom.v10i1.5496Keywords:
C4.5 Algorithm, Broiler Chicken, Performance Index, Production Succe, s, ClassificationAbstract
Broiler chicken farming is one sector that contributes to playing an important role in causing an increase in the quality of life of the community, especially in fulfilling animal protein. Broiler chicken is a superior breed that has high meat productivity and a short reproductive cycle, thus encouraging the formation of partnerships between breeders and large companies. As the core, the company evaluates the success of breeders as seen from the performance index or IP value. The attributes that affect the IP value are depletion, average harvest weight, feed conversion ratio (FCR), and harvest age. The purpose of this research is to find out the attributes that most influence the success rate of broiler production in Riau and to get the accuracy value of the decision tree model using the C4.5 algorithm. This study used 952 livestock production data in Riau divided by a ratio of 80% training data and 20% test data. This test produces a decision tree in which the FCR attribute is the root node with a gain value of 0.45 and is the attribute that most influences the success rate of broiler chicken production in Riau. Evaluation using the confusion matrix produces an accuracy value of 97.11%, a precision of 98.89%, a recall of 98.16%.
References
N. L. Sari and I. , Yovita, “ANALISIS PENGARUH JUMLAH PENDUDUK, INDEKS PEMBANGUNAN MANUSIA DAN TINGKAT PENGANGGURAN TERBUKA TERHADAP KEMISKINAN DI PROVINSI RIAU TAHUN 2002-2021,†J. Ekon. dan Bisnis, vol. 11, no. 1, pp. 567–574, 2022.
mediacenter.riau.go.id, “Hasil Sensus Penduduk, BPS Riau Jumlah Penduduk Riau Tumbuh 855, 72 Ribu Jiwa,†mediacenter.riau.go.id, 2021. https://mediacenter.riau.go.id/read/60008/hasil-sensus-penduduk-bps-riau-jumlah-pendudu.html (accessed Nov. 21, 2022).
K. T. Arum, E. R. Cahyadi, and A. Basith, “Evaluasi Kinerja Peternak Mitra Ayam Ras Pedaging,†J. Ilmu Produksi dan Teknol. Has. Peternak., vol. 5, no. 2, pp. 78–83, 2017, doi: 10.29244/jipthp.5.2.78-83.
R. SURYANTI, “KEBERLANJUTAN USAHA PETERNAKAN AYAM RAS PEDAGING PADA POLA KEMITRAAN,†J. Pangan, vol. 28, no. 3, 2020, doi: 10.33964/jp.v28i3.446.
Pratama, I. M. D. A, I. P. A. Astawa, and I. M. Suasta, “ANALISIS PERFORMANCE USAHA TERNAK AYAM BROILER PADA MODEL KEMITRAAN DENGAN SISTEM OPEN HOUSE (Studi Kasus di Desa Baluk Kecamatan Negara),†J. Trop. Anim. Sci., vol. 9, no. 3, pp. 509–522, 2021, [Online]. Available: https://simdos.unud.ac.id/uploads/file_penelitian_1_dir/80a62e1b18443e312ea393947017b283.pdf
T. Wahyu Widayati, I. Sumpe, S. Pakage, and D. Hendrik Hay, “PERFORMA PRODUKSI DAN PENDAPATAN USAHA AYAM POTONG DI KABUPATEN BIAK PAPUA,†Pros. Semin. Teknol. dan agribisnis Peternak., pp. 24–25, 2021.
T. Nuryati, “Analisis Performans Ayam Broiler Pada Kandang Tertutup Dan Kandang Terbuka,†J. Peternak. Nusant., vol. 5, no. 2, pp. 77–86, 2019.
Bps.go.id, “Produksi Daging Ayam Ras Pedaging menurut Provinsi (Ton), 2019-2021,†Bps.go.id, 2021. https://www.bps.go.id/indicator/24/488/1/produksi-daging-ayam-ras-pedaging-menurut-provinsi.html (accessed Nov. 21, 2021).
D. Ulfa, A. Suyatno, and Y. S. K. Dewi, “POLA DAN KINERJA KEMITRAAN PADA USAHA PETERNAKAN AYAM BROILER DI KABUPATEN KUBU RAYA KALIMANTAN BARAT,†Anal. Kebijak. Pertan., vol. 19, no. 1, pp. 19–32, 2021, [Online]. Available: http://ejurnal.litbang.pertanian.go.id/index.php/akp/article/view/11647/9715
C. B. D. P. Mahardika, W. Y. Pello, and M. Pallo, “Performa Usaha Kemitraan Ayam Ras Pedaging,†Partner, vol. 25, no. 1, pp. 1270–1281, 2020, doi: 10.35726/jp.v25i1.450.
A. Sanmorino, “Metode Perhitungan Tingkat Keberhasilan Panen Broiler Berdasarkan Performance Index ( Pi ) Pada Grup Ternak Di Kota Prabumulih,†J. Ilm. Inform. Glob., vol. 7, no. 1, pp. 37–42, 2017.
S. Pakage et al., “Pengukuran Performa Produksi Ayam Pedaging pada Closed House System dan Open House System di Kabupaten Malang Jawa Timur Indonesia,†J. Sain Peternak. Indones., vol. 15, no. 4, pp. 383–389, 2020, doi: 10.31186/jspi.id.15.4.383-389.
A. Fatma Ayu Rahman, S. Wartulas, J. K. Raya Pagojengan, and P. Brebes, “Prediksi Kelulusan Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus Di Universitas Peradaban),†Ade Fatma Ayu Rahman IJIR, vol. 1, no. 2, pp. 70–77, 2020.
H. Syuryanny Nurindah and S. Syahdan, “Penerapan Algoritma C4.5 Dalam Klasifikasi Penerimaan Peserta Didik Baru,†J. Sains Benuanta, vol. 1, pp. 1–6, 2022, [Online]. Available: http://journal.unikaltar.ac.id/index.php/JSB/index
R. R. Andarista and A. Jananto, “Penerapan Data Mining Algoritma C4.5 Untuk Klasifikasi Hasil Pengujian Kendaraan Bermotor,†J. Tekno Kompak, vol. 16, no. 2, pp. 29–43, 2022.
D. I. Baihaqi, A. N. Handayani, and U. Pujianto, “Perbandingan Metode Naïve Bayes Dan C4.5 Untuk Memprediksi Mortalitas Pada Peternakan Ayam Broiler,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 1, pp. 383–390, 2019, doi: 10.24176/simet.v10i1.2846.
M. A. Tanjung, P. P, and H. Qurniawan, “Analisa Kelayakan Penerima Program Keluarga Harapan (PKH) Menggunakan Algoritma C4.5,†Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, p. 217, 2021, doi: 10.30645/jurasik.v6i1.286.
A. M. Siregar and A. Fauzi, “Klasifikasi Kab Kota Provinsi Jawa Barat Berdasarkan Pendapatan Dari Sektor Pertanian Dengan Algoritma Decision Tree,†Fakt. Exacta, vol. 13, no. 1, p. 1, 2020, doi: 10.30998/faktorexacta.v13i1.5542.



