Klasifikasi Kualitas Jagung Terhadap Data Percobaan Penanaman dengan Metode Decision Tree
DOI:
https://doi.org/10.30865/jurikom.v10i1.5495Keywords:
Analysis, Data Mining, Classfication, Corn, Algorithm C4.5Abstract
Corn is one type of plant that is widely cultivated in Indonesia because it has a high enough price, especially the need for this plant. This plant is used as a substitute for carbohydrates and protein after rice, is also used as feed ingredients for livestock. This lack of corn production is caused by several factors such as the age of trees, fertilizers and pests. The impact that occurred was a decrease in corn production at a time when there were many needs of the company and the community would corn. The corn data processed in this study were sourced from the Department of Horticultural Food of Pasaman Regency and the owners of corn crops. Furthermore, the data is processed using the Rapid Miner software. Aimed to find out the prediction of the quality of the corn planting experiment. The method used in solving this problem is C4.5 Algorithm. From the testing of this method, it was found that two predictions in corn cultivation were ‘good and‘ not good. This analysis makes it easier for farmers to plant corn, especially in the selection of seeds to fertilize them so as to produce good fruit for consumptionReferences
Darmansah and Raswini, “Perancangan Sistem Informasi Pengelolaan Data Pedagang Menggunakan Metode Prototype pada Pasar Wage,†J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, pp. 340–350, 2022.
Darmansah, R. S. Widiasari, A. B. Marcel, and Raswini, “Perancangan Sistem Informasi Inventaris Berbasis Website Menggunakan Metode Waterfall,†Kumpul. J. Ilmu Komput., vol. 09, no. 1, pp. 71–84, 2022.
M. Aminullah, “Konsep Pengembangan Diri Dalam Menghadapi Perkembangan Teknologi Komunikasi Era 4.0,†Komunike, vol. 12, no. 1, pp. 1–23, 2020, doi: 10.20414/jurkom.v12i1.2243.
C. A. Palacios, J. A. Reyes-Suárez, L. A. Bearzotti, V. Leiva, and C. Marchant, “Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in chile,†Entropy, vol. 23, no. 4, pp. 1–23, 2021, doi: 10.3390/e23040485.
M. Pareek and P. Bhari, “A review report on knowledge discovery in databases and various techniques of data mining,†Open Access Int. J. Sci. …, vol. 5, no. 12, pp. 79–82, 2020, [Online]. Available: http://www.oaijse.com/VolumeArticles/FullTextPDF/619_13.A_REVIEW_REPORT_ON_KNOWLEDGE_DISCOVERY_IN_DATABASES_AND_VARIOUS_TECHNIQUES_OF_DATA_MINING.pdf
I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,†J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.
Darmansah, R. Yesputra, T. N. Putra, and I. Syafrinal, Data Mining Menggunakan Aplikasi RAPIDMINER, 1st ed. Solok: pt insan cendikia mandiri, 2022.
D. N. Batubara and A. P. Windarto, “Analisa Klasifikasi Data Mining Pada Tingkat Kepuasan Pengunjung Taman Hewan Pematang Siantar Dengan Algoritma,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 588–592, 2019, doi: 10.30865/komik.v3i1.1664.
R. R. Andarista and A. Jananto, “Penerapan Data Mining Algoritma C4. 5 Untuk Klasifikasi Hasil Pengujian Kendaraan Bermotor,†J. Tekno Kompak, vol. 16, no. 2, pp. 29–43, 2022, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/view/1525%0Ahttps://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/download/1525/944
K. F. Irnanda, D. Hartama, and A. P. Windarto, “Analisa Klasifikasi C4.5 Terhadap Faktor Penyebab Menurunnya Prestasi Belajar Mahasiswa Pada Masa Pandemi,†J. Media Inform. Budidarma, vol. 5, no. 1, p. 327, 2021, doi: 10.30865/mib.v5i1.2763.
M. Thamrin, D. M. Tarigan, and D. Ardilla, “Inovasi Tanam Jagung Double Row Dalam Meningkatkan Produksi Jagung,†J. PRODIKMAS Has. …, vol. 3, no. 1, 2019, [Online]. Available: http://jurnal.umsu.ac.id/index.php/prodikmas/article/view/2589%0Ahttp://download.garuda.kemdikbud.go.id/article.php?article=1073582&val=11583&title=Inovasi Tanam Jagung Double Row Dalam Meningkatkan Produksi Jagung
D. Alita, I. Tubagus, Y. Rahmanto, Styawati, and A. Nurkholis, “Sistem Informasi Geografis Pemetaan Wilayah Kabupaten Lampung Selatan,†J. Sos. Sci. Teknol. Community Serv., vol. 1, no. 2, pp. 1–9, 2020.
A. Sucipto, S. Ahdan, and A. Abyasa, “Usulan Sistem untuk Peningkatan Produksi Jagung menggunakan Metode Certainty Factor,†Prosiding-Seminar Nas. Tek. Elektro UIN Sunan Gunung Djati Bandung, no. November 2019, pp. 478–488, 2020.
A. Wanto, “Prediksi Produktivitas Jagung Indonesia Tahun 2019-2020 Sebagai Upaya Antisipasi Impor Menggunakan Jaringan Saraf,†Sintech J., vol. 1, no. 1, pp. 53–62, 2019.
B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,†J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, 2021, doi: 10.38094/jastt20165.
A. Nurkholis and I. S. Sitanggang, “Optimization for prediction model of palm oil land suitability using spatial decision tree algorithm,†J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 192–200, 2020, doi: 10.14710/jtsiskom.2020.13657.
P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5,†Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020.



