Pemilahan Sampah Menggunakan Model Klasifikasi Support Vector Machine Gabungan dengan Convolutional Neural Network

Authors

  • Miftahuddin Fahmi Universitas Ahmad Dahlan, Yogyakarta
  • Anton Yudhana Universitas Ahmad Dahlan, Yogyakarta
  • Sunardi Sunardi Universitas Ahmad Dahlan, Yogyakarta

DOI:

https://doi.org/10.30865/jurikom.v10i1.5468

Keywords:

CNN, Feature Extraction, Machine Learning, SVM, Waste Management

Abstract

Waste sorting is a vital process in waste management. The problem with the waste sorting process is that humans feel uncomfortable with the smell of garbage for too long. The problem can be solved by creating a machine learning system to identify the waste type. The purpose of this research is to solve waste management problems using machine learning using the most accurate classification model. The types of wastein this research are limited to only two types: organic and inorganic. Data was collected and revised from the Kaggle dataset. Data were imported into the system using Python. Data was trained and used for classifying the waste based on the image source. Waste images will be determined in their category using the Support Vector Machine model with feature extraction using the Convolution layer. The system successfully performs waste classification using the Support Vector Machine model combined with the Convolutional Neural Network with an accuracy of 96,16% and a loss of 7,25% on the overall category

References

A. M. T. dan M. Didiharyono, “Pemanfaatan Sampah Plastik Untuk Dijadikan Bantal Yang Berkualitas Dan Bernilai Ekonomis Di Desa Tolada Kecematan Malangke Kabupaten Luwuutara,†vol. 1, no. 1, pp. 8–13, 2018.

A. Kahfi, “Tinjauan Terhadap Pengelolaan Sampah,†Jurisprud. Jur. Ilmu Huk. Fak. Syariah dan Huk., vol. 4, no. 1, p. 12, 2017, doi: 10.24252/jurisprudentie.v4i1.3661.

R. Setiadi, M. Nurhadi, and F. Prihantoro, “Idealisme dan Dualisme Daur Ulang Sampah di Indonesia: Studi Kasus Kota Semarang,†J. Ilmu Lingkung., vol. 18, no. 1, pp. 48–57, 2020, doi: 10.14710/jil.18.1.48-57.

M. Tamyiz, L. N. Hamidah, A. Widiyanti, and A. Rahmayanti, “Pelatihan Pengelolaan Sampah Rumah Tangga Di Desa Kedungsumur, Kecamatan Krembung, Kabupaten Sidoarjo,†J. Sci. Soc. Dev., vol. 1, no. 1, pp. 16–23, 2018.

B. Wang, J. Sui, B. Yu, C. Yuan, L. Guo, and A. M. A. El-aty, “ur na l P of,†Carbohydr. Polym., p. 117314, 2020, [Online]. Available: https://doi.org/10.1016/j.carbpol.2020.117314.

Y. Wang, D. Wang, and Y. Tang, “Clustered hybrid wind power prediction model based on ARMA, PSO-SVM, and clustering methods,†IEEE Access, vol. 8, pp. 17071–17079, 2020, doi: 10.1109/ACCESS.2020.2968390.

L. Leonardo, Y. Yohannes, and E. Hartati, “Klasifikasi Sampah Daur Ulang Menggunakan Support Vector Machine Dengan Fitur Local Binary Pattern,†J. Algoritm., vol. 1, no. 1, pp. 78–90, 2020, doi: 10.35957/algoritme.v1i1.440.

Y. Chu, C. Huang, X. Xie, B. Tan, S. Kamal, and X. Xiong, “Multilayer hybrid deep-learning method for waste classification and recycling,†Comput. Intell. Neurosci., vol. 2018, 2018, doi: 10.1155/2018/5060857.

S. Sekar, “Waste Classification data,†2019. https://www.kaggle.com/datasets/techsash/waste-classification-data (accessed Mar. 21, 2022).

W. R. U. Fadilah, W. A. Kusuma, A. E. Minarno, and Y. Munarko, “Classification of Human Activity Recognition Utilizing Smartphone Data of CNN-LSTM,†Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 2020, 2021, doi: 10.22219/kinetik.v6i2.1319.

A. S. Ritonga and E. S. Purwaningsih, “Penerapan Metode Support Vector Machine ( SVM ) Dalam Klasifikasi Kualitas Pengelasan Smaw ( Shield Metal Arc Welding ),†Ilm. Edutic, vol. 5, no. 1, pp. 17–25, 2018.

A. Peryanto, A. Yudhana, and R. Umar, “Convolutional Neural Network and Support Vector Machine in Classification of Flower Images,†Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 8, no. 1, pp. 1–7, 2022, doi: 10.23917/khif.v8i1.15531.

V. K. Chauhan, K. Dahiya, and A. Sharma, “Problem formulations and solvers in linear SVM: a review,†Artif. Intell. Rev., vol. 52, no. 2, pp. 803–855, 2019, doi: 10.1007/s10462-018-9614-6.

R. I. Kurnia, “Classification of User Comment Using Word2vec and SVM Classifier,†Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 1, pp. 643–648, 2020, doi: 10.30534/ijatcse/2020/90912020.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,†Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.

C. F. Sabottke and B. M. Spieler, “The effect of image resolution on deep learning in radiography,†Radiol. Artif. Intell., vol. 2, no. 1, 2020, doi: 10.1148/ryai.2019190015.

B. Ghojogh and M. Crowley, “The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial,†pp. 1–23, 2019, [Online]. Available: http://arxiv.org/abs/1905.12787.

Additional Files

Published

2023-02-17

How to Cite

Fahmi, M., Yudhana, A., & Sunardi, S. (2023). Pemilahan Sampah Menggunakan Model Klasifikasi Support Vector Machine Gabungan dengan Convolutional Neural Network. JURNAL RISET KOMPUTER (JURIKOM), 10(1), 76−81. https://doi.org/10.30865/jurikom.v10i1.5468