Implementasi Metode K-Modes Dalam Pengelompokan Penerima Bantuan Langsung Tunai

 (*)Ika Nurul Hidayah Mail (Universitas Tanjungpura, Pontianak, Indonesia)
 Cucu Suhery (Universitas Tanjungpura, Pontianak, Indonesia)
 Rahmi Hidayati (Universitas Tanjungpura, Pontianak, Indonesia)

(*) Corresponding Author

Abstract

Direct Cash Assistance is a government assistance program that is given to underprivileged people. Assistance is distributed in the form of cash assistance sourced from village funds. In the process of distribution BLT funds, there were obstacles faced by the village, namely incomplete data on BLT recipients. Based on these constraints, a data survey of BLT recipients was carried out using predetermined variables. There are 20 variables used for BLT recipients. Based on the survey results, there was a lot of data that had something in common, making it difficult for the Sungai Dungun village to group BLT recipients. Therefore we need a system that can grouping BLT recipient data. The method used for grouping data on this system is the K-Modes method. The test uses the Davies Bouldin Index (DBI) to know out whether the cluster results are good or not. Based on the results of the DBI test, there is a minimum value generated in grouping using 4 groups with a value of 1.25858. Grouping with 4 groups resulted in a very worth it group of 101 heads of households, a feasible group totaling 40 heads of households, a moderately feasible group totaling 44 heads of households, and an unfeasible group totaling 15 heads of households.

Keywords


BLT; DBI; Village; K-Modes; Clustering.

Full Text:

PDF


Article Metrics

Abstract view : 447 times
PDF - 237 times

References

R. Yunus and M. Radjab, Analisis Pengentasan Kemiskinan. Makassar: CV. Social Politic Genius, 2018.

A. Bhinadi, Penanggulangan Kemiskinan dan Pemberdayaan Masyarakat. Yogyakarta: CV Budi Utama, 2017.

Badrudin, D. Noviarni, and H. Arif, Tanggung Jawab Negara Terhadap Fakir Miskin dan Anak Terlantar Dalam Perspektif Maqashid Syari’ah. Sumatera: PT Insan Cendikia Mandiri, 2022.

B. Susantyo, T. Nainggolan, A. Rahman, R. G. Erwinsyah, and N. R. Irmayani, Bantuan Sosial Tunai Kementrian Sosial Bagi Keluarga Terdampak Covid-19. Jakarta: Pusat Penelitian dan Pengembangan Kesejahteraan Sosial, Badan Pendidikan, Penelitian, dan Penyuluhan Sosial, 2020.

P. D. T. dan T. Kementerian Desa, “Panduan Pendataan Bantuan Langsung Tunai – BLT Dana Desa,” E-Book, pp. 1–26, 2020.

F. S. Jumeilah and D. Pratama, “Klasterisasi Penduduk Lanjut Usia Sumatera Selatan Menggunakan Algoritma K-Modes,” J. TAM ( Technol. Accept. Model ), vol. 8, no. 2, pp. 85–89, 2017.

F. Indriani and I. Budiman, “K-Modes Clustering Untuk Mengetahui Jenis Masakan Daerah Yang Populer Pada Website Resep Online,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, p. 290, 2017, doi: 10.25126/jtiik.201744548.

Linada Yuliana, “Penerapan Algoritma K-Modes Clustering Untuk Pengelompokkan Desa Rawan,” p. 18, 2019.

E. K. Nduru, E. Buulolo, P. Studi, T. Informatika, B. D. Medan, and S. Marketing, “IMPLEMENTASI ALGORITMA K-Modes UNTUK MENENTUKAN,” vol. 2, pp. 12–19, 2018.

D. Desyanti, Y. Yusrizal, and F. Sari, “Implementasi Algoritma K-Modes Untuk Mengukur Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Daring,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 719–727, 2022, doi: 10.47065/bits.v3i4.1401.

S. Sari and J. N. Utamajaya, “Sistem Pendukung Keputusan Penerima Bantuan Langsung Tunai Dana Desa Menggunakan Metode Algoritma K-Means Clustering,” J. JUPITER, vol. 14, no. 1, pp. 150–160, 2022.

Y. Filki, “Algoritma K-Means Clustering dalam Memprediksi Penerima Bantuan Langsung Tunai (BLT) Dana Desa,” J. Inform. Ekon. Bisnis, vol. 4, pp. 166–171, 2022, doi: 10.37034/infeb.v4i4.166.

Y. A. Pranoto, N. Vendyansyah, and B. L. Tunai, “METODE K-MODE,” vol. 5, no. 1, pp. 57–63, 2022.

E. Irwansyah and M. Faisal, Advanced Clustering: Teori dan Aplikasi. DeePublish, 2015.

S. Santoso, Mahir Statistik Multivariat dengan SPSS. Jakarta: PT Elex Media Komputindo, 2018.

M. Wahyudi, Masitha, R. Saragih, and Solikhun, Data Mining: Penerapan Algoritma K-Means Clustering dan K-Medoid Clustering. Yayasan Kita Menulis, 2020.

D. Aldo, A. Syawatri, Alwendi, Darmansah, and K. Samosir, Data Mining. Sumatera Barat: Insan Cendikia Mandiri, 2021.

J. Wang, Encyclopedia of Data Warehousing and Mining. USA: Information Science Reference, 2009.

D. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, 1979.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Metode K-Modes Dalam Pengelompokan Penerima Bantuan Langsung Tunai

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ika Nurul Hidayah, Cucu Suhery, Rahmi Hidayati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURIKOM (Jurnal Riset Komputer)
Publish by Universitas Budi Darma (before STMIK BUDI DARMA (P3M))
Email: jurikom.stmikbd@gmail.com

Creative Commons License
 This work is licensed under a Creative Commons Attribution 4.0 International.