Identifikasi Kematangan Buah Menggunakan Metode Gray Level Co-occurence Matrix pada Citra Digital
|
Abstract
In the current era of information technology, the use of images is widely applied in various aspects of life. Some of the uses of image processing include the fields of military, medicine, education, agriculture and so on. One example of the use of image processing that will be discussed in this study is in the agricultural sector. Farmers can take advantage of technology in selecting fruit with the appropriate maturity level. In terms of selecting fruit based on the level of maturity, some fruit farmers still use the conventional method or with the human sense of sight, namely the eye. Therefore, this study was conducted for preliminary research that can change the conventional method into system that uses technology that makes a computerized way of identifying fruit maturity levels. The system that will be used to identify fruit maturity uses the Gray Level Co-occurance Matrix method on digital images and Euclidean Distance as a classification method. This application is built using MatLab 2019a programming. The test results show that the Gray Level Co-occurance Matrix and Euclidean Distance methods can be used to identify the ripeness of guava, oranges, bananas, papayas and mangoes into three categories, namely raw, unripe and ripe. The Gray Level Co-occurance Matrix and Euclidean Distance classification methods succeeded in identifying fruit maturity with an overall success rate of 87%.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 109 timesPDF - 39 times
References
S. Rahman, Belajar Teknik Pengolahan Citra Dengan Mudah. Yogyakarta: Deepublish, 2018.
A. Ciputra, E. H. Rachmawanto, And A. Susanto, “Klasifikasi Tingkat Kematangan Buah Apel Manalagi Dengan Algoritma Naive Bayes Dan Ekstraksi Fitur Citra Digital,” Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, Vol. 9, No. 1, Pp. 465–472, 2018.
W. Harefa And U. Pato, “Evaluasi Tingkat Kematangan Buah Terhadap Mutu Tepung Pisang Kepokyang Dihasilkan.” Riau University, 2017.
E. F. Ananta, S. Rahman, And N. I. Syahputri, “Aplikasi Identifikasi Motif Bendera Pada Setiap Negara Menggunakan Matlab,” In Seminar Nasional Teknologi Informasi & Komunikasi, 2020, Vol. 1, No. 1, Pp. 27–32.
S. Rahman And M. Ulfayani, “Tangan Menggunakan Metode Freeman Chain Code,” Cess (Journal Of Computer Engineering System And Science), Vol. 2, No. 2, Pp. 64–73, 2017, Doi: Https://Doi.Org/10.24114/Cess.V2i2.6195.
S. Rahman And U. Sahira, “Pengenalan Iris Mata Menggunakan Metode Template Matching Correlation,” (Jurti) Jurnal Teknologi Informasi, Vol. 2, No. 2, Pp. 105–112, 2018.
Q. Shandy, S. S. Panna, And Y. Malago, “Penerapan Metode Grey Level Co-Occurrence Matriks (Glcm) Dan K-Nearest Neighbor (K-Nn) Untuk Mendeteksi Tingkat Kematangan Buah Belimbing Bintang,” Jurnal Cosphi, Vol. 3, No. 1, 2019.
A. M. Nur And F. Farhurrahman, “Identifikasi Kematangan Buah Mentimun Berbasis Citra Digital Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Infotek: Jurnal Informatika Dan Teknologi, Vol. 2, No. 1, Pp. 27–33, 2019.
D. T. Hermanto, S. Megira, D. Ninosari, And K. Kusrini, “Identifikasi Tingkat Kematangan Buah Strawberry Menggunakan Gray Level Co-Occurance Matrix (Glcm) Dan Laplacian Filter,” Semnasteknomedia Online, Vol. 6, No. 1, Pp. 2–5, 2018.
J. W. Mukti, “Identifikasi Tingkat Kematangan Buah Jeruk Menggunakan Glcm Berdasarkan Warna Kulit.” Stmik Global Informatika Mdp, 2022.
K. C. Pelangi, “Sistem Cerdas Dalam Klasifikasi Kematangan Buah Jeruk Berdasarkan Fitur Ekstraksi Glcm Dengan Metode Naïve Bayes,” Jurnal Teknologi Dan Manajemen Informatika, Vol. 5, No. 2, 2019.
S. Purwandani And L. Anifah, “Identifikasi Kematangan Buah Tomat Berbasis L* A* B Color Dan Gray Level Co-Occurrence Matrix Menggunakan K-Means Clustering,” Jurnal Teknik Elektro, Vol. 8, No. 2, 2019.
A. Humeau-Heurtier, “Texture Feature Extraction Methods: A Survey,” Ieee Access, Vol. 7, Pp. 8975–9000, 2019.
W. K. Mutlag, S. K. Ali, Z. M. Aydam, And B. H. Taher, “Feature Extraction Methods: A Review,” In Journal Of Physics: Conference Series, 2020, Vol. 1591, No. 1, P. 12028.
S. Singh, D. Srivastava, And S. Agarwal, “Glcm And Its Application In Pattern Recognition,” In 2017 5th International Symposium On Computational And Business Intelligence (Iscbi), 2017, Pp. 20–25.
M. Hall-Beyer, “Glcm Texture: A Tutorial V. 3.0 March 2017,” 2017.
F. D. Aferi, T. W. Purboyo, And R. E. Saputra, “Cotton Texture Segmentation Based On Image Texture Analysis Using Gray Level Co-Occurrence Matrix (Glcm) And Euclidean Distance,” Int. J. Appl. Eng. Res, Vol. 13, No. 1, Pp. 449–455, 2018.
L. Wang, Y. Zhang, And J. Feng, “On The Euclidean Distance Of Images,” Ieee Transactions On Pattern Analysis And Machine Intelligence, Vol. 27, No. 8, Pp. 1334–1339, 2005.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Identifikasi Kematangan Buah Menggunakan Metode Gray Level Co-occurence Matrix pada Citra Digital
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Arnes Sembiring, Sayuti Rahman, Mufida Khairani, Ilham Faisal, Sri Eka Riyani Harahap, Muhammad Zen

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURIKOM (Jurnal Riset Komputer)
Di publikasikan oleh P3M - STMIK BUDI DARMA
Email: jurikom.stmikbd@gmail.com
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Attribution 4.0 International.