Prediksi Hasil Belajar Hybrid Menggunakan Artificial Neural Network Dengan Multilayer Perceptron
DOI:
https://doi.org/10.30865/jurikom.v9i5.5024Keywords:
Hybrid Learning, Artificial Neural Network, Multilayer PerceptronAbstract
The implementation of online distance learning affects the psychosocial aspects of students so that a combination of offline and face-to-face learning is carried out using Hybrid Learning. The problem in this research is the analysis of the competencies that will be generated, student characteristics, face-to-face interactions, online learning strategies, and lecturers by calculating the data from the Hybrid Learning evaluation to get the best level of accuracy using the Machine Learning technique method. The purpose of this study is to evaluate the results of Hybrid learning using the Artificial Neural Network (ANN) method which is expected to have the right level of accuracy and prediction and tolerate errors so that it can produce good predictions and can be used to model good relationships in finding patterns in the data. . Prediction of Hybrid Learning learning outcomes during the Covid 19 pandemic using Machine Learning techniques consisting of 12 attributes with a total of 1,231 datasets of Hybrid Learning learning outcomes in 2022. The Artificial Neural Network algorithm model uses Retrive operators, Set Roles, optimization parameters, Cross Validation, Apply Models, Performance and Logs. Accuracy results show 99.35% meaning that the results of the learning evaluation using Hybrid Learning with predictions that match and turn out to be appropriate are 1039, then those that do not match are 8. The predictions are very suitable and turn out to be very suitable in 104. Artificial Neural Network with Multilayer Perceptron, with two hidden layer and the format of the first hidden layer is 2 nodes, then the second hidden layer is 5 nodes with an output of 3 nodes
References
N. Mardiana, O. Nurdiawan, and A. Fahansyah, “Covid-19 Website Quality Towards user Satisfaction and Intention to Use Analysis using Partial Least Square Struktura Equation Modeling,†Prosiding, p. https://news.ge/anakliis-porti-aris-qveynis-momava, 2020.
E. Johnson, R. Morwane, S. Dada, G. Pretorius, and M. Lotriet, “Adult Learners’ Perspectives on Their Engagement in a Hybrid Learning Postgraduate Programme,†J. Contin. High. Educ., vol. 66, no. 2, pp. 88–105, 2018, doi: 10.1080/07377363.2018.1469071.
M. G. Triyono, “Analisis Efektivitas Penggunaan Model Pembelajaran Hybrid Learning Di Smk Negeri 2 Surabaya,†J. IT-EDU., vol. 5, no. 2, p. 647, 2021.
A. Noval and L. K. Nuryani, “Manajemen Pembelajaran Berbasis Blended Learning Pada Masa Pandemi Covid-19,†J. Islam. Educ. Manaj., vol. 5, no. 2, pp. 201–220, 2020, [Online]. Available: https://journal.uinsgd.ac.id/index.php/isema/article/view/10509/5083
D. Hediansah and H. Surjono, “Hybrid Learning Development to Improve Teacher Learning Management,†JKTP J. Kaji. Teknol. Pendidik., vol. 3, no. 1, pp. 1–9, 2020, doi: 10.17977/um038v3i12019p001.
I. L. Septiani, A. R. F. Hadinata, A. Bahtiar, N. Suarna, and N. R, “Analisa Kepuasan Mahasiswa Terhadap E-Learning Menggunakan Teknik Machine Learning,†INFORMATICS Educ. Prof. J. Informatics, vol. 5, no. 2, p. 137, 2021, doi: 10.51211/itbi.v5i2.1521.
R. Novianti, S.Psi, M.Pd, E. Puspitasari, and I. Maria, “Parental Involvement in Children’S Learning Activities During the Covid-19 Pandemic,†J. PAJAR (Pendidikan dan Pengajaran), vol. 5, no. 2, pp. 384–390, 2021, doi: 10.33578/pjr.v5i2.8220.
H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.
M. Zein et al., “Hybrid Learning in Mathematics Learning (Experimental Study in SMA Negeri 1 Pekanbaru),†Malikussaleh J. Math. Learn., vol. 2, no. 2, pp. 56–60, 2019, doi: 10.29103/mjml.v2i2.2009.
M. Makhin, “Hybrid Learning: Model Pembelajaran pada Masa Pandemi di SD Negeri Bungurasih Waru Sidoarjo,†Mudir J. Manaj. Pendidik., vol. 3, no. 2, pp. 95–103, 2021, doi: 10.55352/mudir.v3i2.312.
P. Indarto, M. Fatoni, and U. M. Surakarta, “Model Pembelajaran Hybrid Learning Pada Mata,†Semin. Nas. Pendidik., vol. 3, no. 6, pp. 55–63, 2018, [Online]. Available: http://hdl.handle.net/11617/10550
Y. Perwira, A. Sitohang, and A. D. Stephanie, “Analisa Metode C4.5 Untuk Mengetahui Faktor Kepuasan Mahasiswa Terhadap Pembelajaran Daring,†J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 141–147, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2476.
H. Jayadianti, T. A. Cahyadi, N. A. Amri, and M. F. Pitayandanu, “Metode Komparasi Artificial Neural Network Pada Prediksi Curah Hujan - Literature Review,†J. Tekno Insentif, vol. 14, no. 2, pp. 48–53, 2020, doi: 10.36787/jti.v14i2.150.
J. Fei and C. Lu, “Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure,†IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 4, pp. 1275–1286, 2018, doi: 10.1109/TNNLS.2017.2672998.
N. A. Almansour et al., “Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study,†Comput. Biol. Med., vol. 109, no. October 2018, pp. 101–111, 2019, doi: 10.1016/j.compbiomed.2019.04.017.
H. Putra and N. Ulfa Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,†J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 100–107, 2020, doi: 10.25077/teknosi.v6i2.2020.100-107.
A. Faqih, O. Nurdiawan, and A. Setiawan, “Ethnomathematics: Utilization of Crock, Ladle, and Chopping Board for Learning Material of Geometry at the Elementary School,†IndoMath Indones. Math. Educ., vol. 4, no. 1, p. 46, 2021, doi: 10.30738/indomath.v4i1.8861.
O. Nurdiawan, F. A. Pratama, D. A. Kurnia, Kaslani, and N. Rahaningsih, “Optimization of Traveling Salesman Problem on Scheduling Tour Packages using Genetic Algorithms,†J. Phys. Conf. Ser., vol. 1477, no. 5, 2020, doi: 10.1088/1742-6596/1477/5/052037.
O. Somantri, D. A. Kurnia, D. Sudrajat, N. Rahaningsih, O. Nurdiawan, and L. Perdana Wanti, “A Hybrid Method Based on Particle Swarm Optimization for Restaurant Culinary Food Reviews,†Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, no. May 2020, 2019, doi: 10.1109/ICIC47613.2019.8985842.
Nurdin et al., “The Implementation of Backtracking Algorithm on Crossword Puzzle Games Based on Android,†J. Phys. Conf. Ser., vol. 1363, no. 1, 2019, doi: 10.1088/1742-6596/1363/1/012075.
A. Faqih, O. Nurdiawan, and A. Setiawan, “Pengembangan Media pembelajaran Multimedia Interaktif Alat Masak Tradisional Berbasis Etnomatematika,†Mosharafa J. Pendidik. Mat., vol. 10, no. 2, pp. 301–310, 2021, doi: 10.31980/mosharafa.v10i2.876.
E. Sutisna and L. H. Vonti, “Innovation Development Strategy for Hybrid Learning,†vol. 9, no. 1, pp. 103–114, 2020.
Ramdhani T., “Pengaruh Model Pembelajaran Hybrid Learning Berbantuan Schoology Terhadap Prestasi Belajar Matematika Siswa Kelas XI IPS SMAN 2 Singaraja,†Ramadhani T, vol. 11, no. 2, pp. 2599–2600, 2020, [Online]. Available: https://repo.undiksha.ac.id/2221/



