Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM

Authors

  • Ahmad Maulana Malik Fattah Universitas Singaperbangsa Karawang, Karawang
  • Apriade Voutama Universitas Singaperbangsa Karawang, Karawang
  • Nono Heryana Universitas Singaperbangsa Karawang, Karawang
  • Nina Sulistiyowati Universitas Singaperbangsa Karawang, Karawang

DOI:

https://doi.org/10.30865/jurikom.v9i5.5021

Keywords:

CRISP-DM, Machine Learning, Regression Model, Car Purchase, Web Service

Abstract

Along with the increasing public demand for car transportation modes, car sales businesses are also increasing. Efforts to exist and be competitive are carried out such as by applying machine learning models to determine the car’s selling price based on its specification. Businesses can also stimulate sales by actively offering customers. The effectiveness of the active and massive offerings can be increased by personalizing the offers provided. This research uses a machine learning-based approach to learn customer profile data to predict the car’s price they would buy. The research was conducted by adopting the CRISP-DM framework and developed using the Google Colaboratory and Azure Machine Learning platforms. The modeling stage developed six regression models, those are linear regression, Lasso, Ridge, Random Forest Regressor, Elastic-net, and Support Vector Regressor (SVR). After the evaluation stage, the Lasso regression model with the performance of R-squared (R2) of 0,99958 and Mean Absolute Error (MAE) of 2.284.865,29 deployed as a web service endpoint so it could be accessed in real-time. The web service required the customer’s “Gender, Age, Annual Salary, Credit Card Debt, and Net Worth†to return a response of the recommended car price range prediction for the customer to buy. In further development, predictions obtained through web services can be implemented in public applications to display personalized car sales offers or pages based on customer profiles

References

B. Kriswantara, Kurniawati, and H. F. Pardede, “Prediksi Harga Mobil Bekas dengan Machine Learning,†Syntax Lit. J. Ilm. Indones., vol. 6, no. 5, pp. 2100–2110, 2021, doi: http://dx.doi.org/10.36418/syntax-literate.v6i5.2716.

M. A. Aditya, R. D. Mulyana, I. P. Eka, and S. R. Widianto, “Penggabungan Teknologi Untuk Analisa Data Berbasis Data Science,†in Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 2020, pp. 51–56. [Online]. Available: https://prosiding.seminar-id.com/index.php/sainteks

A. Pandey, V. Rastogi, and S. Singh, “Car’s Selling Price Prediction using Random Forest Machine Learning Algorithm,†SSRN Electron. J., 2020, doi: 10.2139/ssrn.3702236.

E. Dewi, S. Mulyani, F. Mulady, D. Ramadhan, A. Ariyantono, and D. Ramdani, “Estimasi Harga Jual Mobil Bekas Menggunakan Metode Regresi Linier Berganda,†e-Jurnal JUSITI (Jurnal Sist. Inf. dan Teknol. Informasi), vol. 9, no. 1, pp. 1–8, 2020, doi: 10.36774/jusiti.v9i1.649.

I. Purnamasari, “Klasifikasi Pelanggan Produk IndiHome Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Algoritma Genetik,†J. Tek. Komput., vol. 4, no. 1, pp. 8–16, 2018.

F. Naufal, Y. H. Chrisnanto, and A. K. Ningsih, “Sistem Rekomendasi Penawaran Produk Pada Online Shop Menggunakan K-Means Clustering,†Informatics Digit. Expert -, vol. 1, pp. 10–17, 2022.

A. I. Putra and R. R. Santika, “Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering,†Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 121–130, 2020, doi: 10.29408/edumatic.v4i1.2162.

P. P. Yanti, “A Survey : Application of Big Data in the Travel and Tourism Industry,†ITEJ (Information Technol. Eng. Journals), vol. 5, no. 1, pp. 1–13, 2020, doi: 10.24235/itej.v5i1.38.

Y. Khandelwal, “Car Purchase Price (beginner dataset),†2020. https://www.kaggle.com/datasets/yashk07/car-purchase-price-beginner-dataset (accessed Jan. 04, 2022).

A. P. Fadillah, “Penerapan Metode CRISP-DM untuk Prediksi Kelulusan Studi Mahasiswa Menempuh Mata Kuliah (Studi Kasus Universitas XYZ),†J. Tek. Inform. dan Sist. Inf., vol. 1, no. 3, pp. 260–270, 2015, doi: 10.28932/jutisi.v1i3.406.

M. Radhi, A. Amalia, D. R. H. Sitompul, S. H. Sinurat, and E. Indra, “Analisis Big Data Dengan Metode Exploratory Data Analysis (EDA) dan Metode Visualisasi Menggunakan Jupyter Notebook,†J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 4, no. 2, pp. 23–27, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v4i2.2475.

Nuryadi, T. D. Astuti, E. S. Utami, and M. Budiantara, Dasar-Dasar Statistik Penelitian, 1st ed. Yogyakarta: SIBUKU MEDIA, 2017.

M. Nurudin, M. N. Mara, and D. Kusnandar, “Ukuran Sampel dan Distribusi Sampling Dari Beberapa Variabel Random Kontinu,†Bul. Ilm. Mat. Stat. dan Ter., vol. 03, no. 1, pp. 1–6, 2014, doi: 10.26418/bbimst.v3i01.4461.

A. Sen, “Statistics — quick reference,†2021. https://medium.com/analytics-vidhya/statistics-quick-reference-4cad05eebd45 (accessed Jan. 09, 2022).

A. Kreiley, “Spatial and Temporal Variability of the Saline Intrusion in the Lower Charles River,†no. August, 2020, doi: 10.13140/RG.2.2.27771.34087.

F. I. Kurniadi, D. Satyananda, E. Santika, and P. D. Larasati, “Multi-output Regression untuk memprediksi Luas Wilayah, Kualitas Padi dan Produksi Padi pada Pulau Jawa,†J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 5, no. 2, pp. 18–23, 2022, doi: 10.47970/siskom-kb.v5i2.269.

J. Pendidikan and D. Konseling, “Clustering Menggunakan Algoritma K-Means Pada Penyakit ISPA di Puskesmas Kabupaten Karawang,†J. Pendidik. dan Konseling, vol. 4, no. 5, pp. 462–473, 2022, doi: 10.31004/jpdk.v4i5.6632.

F. Muhammad, N. M. Maghfur, and A. Voutama, “Sentiment Analysis Dataset on COVID-19 Variant News,†SYSTEMATICS, vol. 4, no. 1, pp. 382–391, 2022.

A. Gholamy, V. Kreinovich, and O. Kosheleva, “Why 70/30 or 80/20 Relation Between Training and Testing Sets : A Pedagogical Explanation,†2018. [Online]. Available: https://scholarworks.utep.edu/cs_techrep/1209/

E. Zuccarelli, “Performance Metrics in Machine Learning — Part 2: Regression,†2021. https://towardsdatascience.com/performance-metrics-in-machine-learning-part-2-regression-c60608f3ef6a (accessed Jan. 04, 2022).

A. Yoga Pratama et al., “Analisis Sentimen Media Sosial Twitter Dengan Algoritma K-Nearest Neighbor Dan Seleksi Fitur Chi-Square (Kasus Omnibus Law Cipta Kerja),†J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 897–910, 2021.

H. Ariesta and M. A. Kartawidjaja, “Feature Selection pada Azure Machine Learning untuk Prediksi Calon Mahasiswa Berprestasi,†TESLA J. Tek. Elektro, vol. 20, no. 2, pp. 186–195, 2018.

Additional Files

Published

2022-10-31

How to Cite

Fattah, A. M. M., Voutama, A., Heryana, N., & Sulistiyowati, N. (2022). Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM. JURNAL RISET KOMPUTER (JURIKOM), 9(5), 1669−1678. https://doi.org/10.30865/jurikom.v9i5.5021