Jaringan Saraf Tiruan Pengenalan Pola Karakter Kabataku Menggunakan Metode Bidirectional Associative Memory (BAM) Kontinu
DOI:
https://doi.org/10.30865/jurikom.v9i5.5016Keywords:
Artificial intelligence, Artificial Neural Networks, Pattern Recognition, Continuous BAM, SigmoidAbstract
Artificial neural network is an information processing paradigm with a working system using biological concepts in processing information so that it has capabilities similar to the human brain, Jst is able to solve problems using uncertainty science such as Kabataku pattern recognition. Kabataku is a character operator used in Mathematics with the concepts of X, :, + and -. Introduction This character operator uses the concept of artificial intelligence, which uses the theory and process of Artificial Neural Networks. The purpose of this study is to determine the effectiveness of the Continuous BAM method in recognizing Kabataku character patterns in arithmetic operations in mathematics. The Bidirectional Associative Memory (BAM) method has the ability in associative memory or content addressable memory can be called by using the part stored in the memory itself. BAM in an artificial neural network has 2 layers, namely the input layer and the output layer that are interconnected between the two, also called bidirectional, with the work process if the matrix weight of the signal sent from the input layer X to the output layer Y is W, then the matrix weight of the signal sent from the output layer Y to the input layer X is WT . Continuous BAM method will change the input to output more finely with a value that lies in the range [0,1]. The activation function used is the sigmoid function. The final result of pattern recognition is x1= [-8 -12], x2 =[ 8 0], x3 [12 8], x4= [16 12] Not all patterns match the target.
References
M. U. Musthofa, Z. K. Umma, and A. N. Handayani, “Analisis Jaringan Saraf Tiruan Model Perceptron Pada Pengenalan Pola Pulau di Indonesia,†Jurnal Ilmiah Teknologi Informasi Asia, vol. 11, no. 1, p. 89, 2017, doi: 10.32815/jitika.v11i1.56.
R. Husen et al., “Pengenalan Pola Sidik Jari Berbasis Jaringan Saraf Tiruan Perambatan Balik,†Pengenalan Pola Sidik Jari Berbasis Jaringan Saraf Tiruan Perambatan Balik, vol. 1, no. 1, pp. 1–20, 2015.
N. Feri Rahmadani, Akim M.H. Pardede, “Jaringan Saraf Tiruan Prediksi Jumlah Pengiriman Barang Menggunakan Metode Backpropagation ( Studi Kasus : Kantor Pos Binjai ),†Jtik (Jurnal Teknik Informatika Kaputama), vol. 5, no. 1, pp. 100–106, 2021.
Z. Arifin, “Jaringan Saraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia,†Jurnal Informatika Mulawarman Program Studi Ilmu Komputer Universitas Mulawarman, vol. 4, no. 1, pp. 21–26, 2009.
D. Avianto, “Pengenalan Pola Karakter Plat Nomor Kendaraan Menggunakan Algoritma Momentum Backpropagation Neural Network,†Jurnal Informatika, vol. 10, no. 1, pp. 1199–1209, 2016, doi: 10.26555/jifo.v10i1.a3352.
M. Fadhilla, M. R. A. Saf, and D. S. S. Sahid, “Pengenalan Kepribadian Seseorang Berdasarkan Pola Tulisan Tangan Menggunakan Jaringan Saraf Tiruan,†Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), vol. 6, no. 3, 2017, doi: 10.22146/jnteti.v6i3.340.
A. Sudarsono, “Jaringan Saraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Bacpropagation (Studi Kasus Di Kota Bengkulu),†Jurnal Media Infotama, vol. 12, no. 1, pp. 61–69, 2016, doi: 10.37676/jmi.v12i1.273.
A. Fadlil, I. Riadi, and A. Nugrahantoro, “Kombinasi Sinkronisasi Jaringan Saraf Tiruan dan Vigenere Cipher untuk Optimasi Keamanan Informasi,†Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 11, no. 1, pp. 81–95, 2020, doi: 10.31849/digitalzone.v11i1.3945.
Ansori, “Pengenalan Pola Dua Dimensi Sederhana Dengan Jaringan Saraf Tiruan Hebb,†Paper Knowledge . Toward a Media History of Documents, vol. 3, no. April, pp. 49–58, 2015.
S. Purba, “Pengenalan Karakter Menggunakan Metode Bidirectional Associative Memory ( Bam ) Kontinu,†vol. 11, no. 01, pp. 89–101, 2019.
J. D. Susatyono, Kecerdasan Buatan, Kajian Konsep dan Penerapan. 2021.
J. Coding, S. K. Untan, H. Masrani, I. Ruslianto, J. S. Komputer, and J. S. Informasi, “Pada proses segmentasi ini dibagi menjadi dua bagian , yaitu segmentasi baris dan,†vol. 06, no. 02, pp. 69–78, 2018.
G. A. Pauzi, “Sistem Identifikasi dan Pengenalan Pola Citra Tanda-Tangan Menggunakan Sistem Jaringan Saraf Tiruan (Artificial Neural Networks) Dengan Metode Backpropagation,†vol. 03, no. 02, pp. 93–101, 2015.
D. Muliona Rizki, “Jaringan Saraf Tiruan Pengenalan Pola Huruf,†vol. 2, no. 1, pp. 46–50, 2018.
K. L. Tjung et al., “Implementasi Kombinasi Jaringan Saraf Tiruan Metode Self-Organized Map ( SOM ) dan Bidirectional Associative Memory ( BAM ) Pada AI Game Action Adventure .,†pp. 1–7, 2013.
A. Giawa, “Implementasi Metode Bidirectional Associative Memory Pada Absensi Berbasis Identifikasi Wajah ( Studi Kasus : Mts Zending Islam Indonesia Medan ),†vol. 8, pp. 108–111, 2019.
A. Azis and T. Kurniawan, “Identifikasi Pola Sidik Jari dengan Jaringan Saraf Tiruan Bidirectional Associative Memory,†Bimipa, vol. 16, no. 3, pp. 7–12, 2006.



