Sentimen Analisis Opini Masyarakat Terhadap Kebijakan Kominfo atas Pemblokiran Situs non-PSE pada Media Sosial Twitter
DOI:
https://doi.org/10.30865/jurikom.v9i5.4950Keywords:
Sentiment Analysis, Classification Method, KNN, Random Forest, TwitterAbstract
Kominfo is a state government agency in the field of communication and information. Some time ago Kominfo issued a policy, namely the blocking of sites that do not register themselves as PSE. This policy has become a hot topic on social media, especially Twitter. Therefore, this research was conducted by collecting public opinion, especially on Twitter for sentiment analysis. The goal is to be able to classify public responses into positive, negative and neutral opinions using the InSet Lexicon. In addition, the classification will compare several classification methods, namely Decision Tree, KNN, Naïve Bayes, Random Forest, Logistic Regression and SVM. The results of this study stated that as many as 1234 tweets that had been pre-processed tended to be negative with a percentage of 82.82%. while positive tweets are worth 10.53% and neutral tweets are 6.65%. The method with high accuracy value in this study is the KNN and Random Forest methods with an accuracy of 85.8%.
References
D. D. Putri, G. F. Nama, dan W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,†J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, hal. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.
R. Gunawan, R. Septiadi, F. A. Wenando, H. Mukhtar, dan Syahril, “K-Nearest Neighbor (KNN) Untuk Menganalisis Sentimen Terhadap Kebijakan Merdeka Belajar Kampus Merdeka Pada Komentar Twitter,†J. Comput. Sci. Inf. Technol., vol. 3, no. 2, hal. 152–158, 2022.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, dan W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,†J. Teknoinfo, vol. 14, no. 2, hal. 116–124, 2020, doi: 10.33365/jti.v14i2.679.
D. Darwis, E. S. Pratiwi, dan A. F. O. Pasaribu, “Penerapan Algoritma SVM untuk Analisis Sentimen pada Data Twitter Komisi pemberantasan Korupsi Republik Indonesia,†J. Ilm. Edutic, vol. 7, no. 1, hal. 1–11, 2020.
A. Putri dan A. Muzakir, “Analisis Sentimen Cyberbullying Kpop Di Media Sosial Twitter Menggunakan Metode Naive Bayes,†J. Ilm. Indones., vol. 7, no. 9, hal. 12421–12432, 2022.
A. K. Fauziyyah dan D. H. Gautama, “Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python,†J. Ilm. SINUS, vol. 18, no. 2, hal. 31–42, 2020, doi: 10.30646/sinus.v18i2.491.
M. I. Fikri, T. S. Sabrila, dan Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,†Smatika J., vol. 10, no. 02, hal. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
M. Syarifuddinn, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan KNN,†INTI Nusa Mandiri, vol. 15, no. 1, hal. 23–28, 2020, doi: 10.33480/inti.v15i1.1347.
R. Kurniawan dan A. Apriliani, “Analisis Sentimen Masyarakat Terhadap Virus Corona Berdasarkan Opini Dari Twitter Berbasis Web Scraper,†Jurnal INSTEK (Informatika Sains dan Teknologi), vol. 5, no. 1. hal. 67–75, 2020. doi: 10.24252/instek.v5i1.13686.
S. L. M. Sitio, “Analisis Sentimen Covid 19 Berdasarkan Komentar Pada Media Sosial Twitter Menggunakan Phyton,†J. E-Bisnis, Sist. Inf. , Teknol. Inf. ESIT, vol. 17, no. 02, hal. 57–61, 2022.
M. K. Al Fath, Arini, dan N. Hakiem, “Sentiment Analysis Of Full Day School Policy Comment Using Naïve Bayes Classifier Algorithm,†Sink. J. dan Penelit. Tek. Inform., vol. 5, no. 1, hal. 107–114, 2020, doi: https://doi.org/10.33395/sinkron.v5i1.10564 e-ISSN.
S. Fanissa, M. A. Fauzi, dan S. Adinugroho, “Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking Image Processing and Computer Vision View project Food Image Classification, Retrieval, and Analysis View project,†J. Teknol. Inf. Dan Ilmu Komput., no. February, 2018, [Daring]. Tersedia pada: https://www.researchgate.net/publication/322959527
F. Koto dan G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian Sentiment Analysis in Microblogs,†Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, hal. 391–394, 2017, doi: 10.1109/IALP.2017.8300625.
A. L. Fairuz, R. D. Ramadhani, dan N. A. F. Tanjung, “Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter,†J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 1, hal. 42–51, 2021, doi: 10.20895/dinda.v1i1.180.
F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,†INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, hal. 50, 2018, doi: 10.35314/isi.v3i1.335.
J. A. Septian, T. M. Fahrudin, dan A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,†J. Intell. Syst. Comput., hal. 43–49, 2019, [Daring]. Tersedia pada: https://t.co/9WloaWpfD5
F. F. Rachman dan S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,†Indones. Heal. Inf. Manag. J., vol. 8, no. 2, hal. 100–109, 2020, [Daring]. Tersedia pada: https://inohim.esaunggul.ac.id/index.php/INO/article/view/223/175
B. M. Pintoko dan K. M. L., “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naive Bayes Classifier,†e-Proceeding Eng., vol. 5, no. 3, hal. 8121–8130, 2018.
D. Normawati dan S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,†J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 5, no. 2, hal. 697–711, 2021.
H. Azis, F. T. Admojo, dan E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,†vol. 19, no. 3, hal. 286–294, 2020.



