Penerapan Metode Mobile-Net Untuk Klasifikasi Citra Penyakit Kanker Paru-Paru
DOI:
https://doi.org/10.30865/jurikom.v9i5.4918Keywords:
Lung Cancer, Segmentation, Classification, Mobile-Net, K-Means, CNNAbstract
Lung cancer is the main cause of all cancer diagnoses which reaches 13 percent in the world. According to WHO, lung cancer is the most common type of cancer in men in Indonesia and the fifth most common for all types of cancer in women. This is because the majority of smoking is experienced by men, causing lung cancer. Until now there is no suitable screening method for lung cancer in general. Screening methods that have been recommended for the detection of lung cancer are limited to high-risk patient groups. Whereas the risk of the severity of lung cancer will be even greater if it is not detected early, so as a result lung cancer patients are increasingly difficult to treat. The development of this biomedical technology can be used to assist the early detection process in patients suffering from lung cancer regardless of the criteria for the high risk group first, because if cancer is detected early, the death rate decreases. So in this study the researchers segmented and classified lung cancer using one of the architectures of the CNN algorithm, namely Mobile-Net to facilitate the classification and detection process of lung cancer. As the results of the research conducted by the author on the image of lung cancer with the K-Means segmentation process and classification using the CNN method with the Mobile-Net model, the accuracy is 96.70% and the validation accuracy is 90.45%. This shows that the classification using Mobile-Net with the segmentation process first on the lung cancer image can properly classify the type of disease well
References
Kemenkes, “Panduan Penatalaksanaan Kanker Paru,†Buku Ajar Paru, pp. 125–143, 2019.
L. Geng, S. Zhang, J. Tong, and Z. Xiao, “Lung segmentation method with dilated convolution based on VGG-16 network,†Comput. Assist. Surg., vol. 24, no. sup2, pp. 27–33, 2019, doi: 10.1080/24699322.2019.1649071.
A. Basturk, S. Karacavus, and B. Yilmaz, “Metabolic Imaging Based Sub-Classification of Lung Cancer,†vol. 8, 2020, doi: 10.1109/ACCESS.2020.3040155.
M. I. Fajri and L. Anifah, “Deteksi Status Kanker Paru-Paru Pada Citra Ct Scan Menggunakan Metode Fuzzy Logic,†Tek. Elektro, vol. 7 no. 3, pp. 121–126, 2018.
P. Rao, N. A. Fereira, and R. Srinivasan, “Convolutional neural networks for lung cancer screening in computed tomography (CT) scans,†Proc. 2016 2nd Int. Conf. Contemp. Comput. Informatics, IC3I 2016, pp. 489–493, 2016, doi: 10.1109/IC3I.2016.7918014.
W. J. Sori, J. Feng, and S. Liu, “Multi-path convolutional neural network for lung cancer detection,†Multidimens. Syst. Signal Process., vol. 30, no. 4, pp. 1749–1768, 2019, doi: 10.1007/s11045-018-0626-9.
A. Pradhan, B. Sarma, and B. K. Dey, “Lung Cancer Detection using 3D Convolutional Neural Networks,†2020 Int. Conf. Comput. Perform. Eval. ComPE 2020, pp. 765–770, 2020, doi: 10.1109/ComPE49325.2020.9200176.
R. Annisa, “Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung,†J. Tek. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019, [Online]. Available: http://jurnal.kaputama.ac.id/index.php/JTIK/article/view/141.
M. Arsal, B. Agus Wardijono, and D. Anggraini, “Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN,†J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 1, pp. 55–63, 2020, doi: 10.25077/teknosi.v6i1.2020.55-63.
S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image Segmentation Using Deep Learning : A Survey,†arXiv, pp. 1–22, 2020.
R. Capor Hrosik, E. Tuba, E. Dolicanin, R. Jovanovic, and M. Tuba, “Brain image segmentation based on firefly algorithm combined with k-means clustering,†Stud. Informatics Control, vol. 28, no. 2, pp. 167–176, 2019, doi: 10.24846/v28i2y201905.
M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.
Mulaab, Data Mining Konsep dan Apikasi. Malang: Media Nusa Kreatif, 2017.
C. Kamusoko, Improving Image Classifi cation. 2019.
W. Wang, Y. Li, T. Zou, X. Wang, J. You, and Y. Luo, “A novel image classification approach via dense-mobilenet models,†Mob. Inf. Syst., vol. 2020, 2020, doi: 10.1155/2020/7602384.
C. Bi, J. Wang, Y. Duan, B. Fu, J. R. Kang, and Y. Shi, “MobileNet Based Apple Leaf Diseases Identification,†Mob. Networks Appl., 2020, doi: 10.1007/s11036-020-01640-1.
S. Z. M. Zaki, M. A. Zulkifley, M. Mohd Stofa, N. A. M. Kamari, and N. A. Mohamed, “Classification of tomato leaf diseases using mobilenet v2,†Int. J. Artif. Intell., vol. 9, no. 2, pp. 290–296, 2020, doi: 10.11591/ijai.v9.i2.pp290-296.



