Penerapan Algoritma Support Vector Machine Pada Analisis Sentimen Hashtag Twitter

Authors

  • Rusydi Umar Universitas Ahmad Dahlan, Yogyakarta
  • Sunardi Sunardi Universitas Ahmad Dahlan, Yogyakarta
  • Muhammad Nur Ardhiansyah Universitas Ahmad Dahlan, Yogyakarta

DOI:

https://doi.org/10.30865/jurikom.v9i5.4877

Keywords:

Sentiment Analysis, Hashtag, Twitter, Support Vector Machine

Abstract

The development of the creative industry in Indonesia is marked by the emergence of content creators such as YouTubers and celebrities. With the emergence of content creators, people in these professions must be more creative and come up with new things in accordance with community trends in accordance with applicable laws in Indonesia. Twitter is one of the social media that can be used to share online and provide information in accordance with the prevailing trends in society. Hashtags or hashtags on Twitter are often used by users to add comments so that when the hashtag is used a lot it will become a trending topic. By analyzing sentiment on trending topics, positive and negative tendencies will be obtained that can help the content creator profession to create content. This study uses the Support Vector Machine (SVM) method to conduct a sentiment analysis process about the twitter hashtag. The data used is hashtag data on twitter. The data that has been obtained is then carried out by text preprocessing, then weighting, and finally sentiment analysis using SVM. This study uses tweet data taken on October 29, 2022 as many as 21 data, namely “BeliPulsaDiGrab†which has two sentiment classes, namely positive sentiment as much as 99% and negative 1% data

References

Bintang, R. A. K. N., Umar, R., & Yudhana, U. (2018). Perancangan perbandingan live forensics pada keamanan media sosial Instagram, Facebook dan Twitter di Windows 10. Prosiding SNST Ke-9 Tahun 2018 Fakultas Teknik Universitas Wahid Hasyim, 125–128.

Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. Integer Journal Maret, 1(1), 32–41. https://www.researchgate.net/profile/Ghulam_Buntoro/publication/316617194_Analisis_Sentimen_Calon_Gubernur_DKI_Jakarta_2017_Di_Twitter/links/5907eee44585152d2e9ff992/Analisis-Sentimen-Calon-Gubernur-DKI-Jakarta-2017-Di-Twitter.pdf

Ernawati, S., & Wati, R. (2018). Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel. VI(1).

Ipmawati, J., Kusrini, & Taufiq Luthfi, E. (2017). Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen. Indonesian Journal on Networking and Security.

Liu, B. (2010). Sentiment analysis and subjectivity. In Handbook of Natural Language Processing, Second Edition.

Rochmadi, T., Riadi, I., & Prayudi, Y. (2017). Live Forensics for Anti-Forensics Analysis on Private Portable Web Browser. International Journal of Computer Applications, 164(8). https://doi.org/10.5120/ijca2017913717

Rofiqoh, U., Perdana, R. S., & Fauzi, M. A. (2017). Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonesia Pada Twitter Dengan Metode Support Vector Machine dan Lexion Based Feature. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya.

Rozi, I. F., Hadi, S., & Achmad, E. (2012). Implementasi Opinion Mining ( Analisis Sentimen ) untuk Ekstraksi Data Opini Publik pada Perguruan Tinggi. 6(1), 37–43.

Rozi, I. F., Hamdana, E. N., Balya, M., & Alfahmi, I. (2017). PENGEMBANGAN APLIKASI ANALISIS SENTIMEN TWITTER ( Studi Kasus SAMSAT Kota Malang ). 149–154.

Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen Pelanggan Toko Online JD.ID Menggunakan Metode Naive Bayes Classifier Berbasis Konversi Ikon Emosi. 10, 681–686.

Setianto, W. (2020). Analisis Sentimen Twitter Untuk Mengetahui Dampak Dari Pandemi Covid-19 Terhadap Masyarakat Jakarta. Github, 1–17. https://github.com/Hyuto/Analisis-Sentimen-Corona-DKI-Jakarta ABSTRAK

Setyobudi, W., Alwi, A., & Astuti, I. P. (2018). SENTIMEN ANALISIS TWITTER TERHADAP PENYELENGGARAAN GOJEK TRAVELOKA LIGA 1 INDONESIA. KOMPUTEK. https://doi.org/10.24269/jkt.v2i1.68

Sunardi, Fadlil, A., & Suprianto. (2018). Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Pada Angket Mahasiswa. Saintekbu, 10(2), 1–9. https://doi.org/10.32764/saintekbu.v10i2.190

Umar, R., Riadi, I., & Faroek, D. A. (2020). Komparasi Image Matching Menggunakan Metode K-Nearest Neighbor ( KNN ) dan Metode Support Vector Machine ( SVM ). Jurnal of Applied Informatics and Computing (JAIC), 4(2), 124–131.

Zuhdi, A. M., Utami, E., & Raharjo, S. (2019). Analisis Ssentiment Twitter Terhadap Capres Indonesia 2019 Dengan Metode K-NN. SSRN Electronic Journal, 5, 1–7. https://doi.org/10.2139/ssrn.3368718

Zuhriyanto, I., Yudhana, A., & Riadi, I. (2018). Perancangan Digital Forensik Pada Aplikasi. 2018(November), 86–91.

Additional Files

Published

2022-10-31

How to Cite

Umar, R., Sunardi, S., & Ardhiansyah, M. N. (2022). Penerapan Algoritma Support Vector Machine Pada Analisis Sentimen Hashtag Twitter. JURNAL RISET KOMPUTER (JURIKOM), 9(5), 1607−1613. https://doi.org/10.30865/jurikom.v9i5.4877