Analisis Sentimen Tokopedia Pada Ulasan di Google Playstore Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor

Authors

  • Muhammad Farid El Firdaus Universitas Amikom Purwokerto, Purwokerto
  • Nurfaizah Nurfaizah Universitas Amikom Purwokerto, Purwokerto
  • Sarmini Sarmini Universitas Amikom Purwokerto, Purwokerto

DOI:

https://doi.org/10.30865/jurikom.v9i5.4774

Keywords:

K-Nearest Neighbor, Naïve Bayes, Tokopedia, Sentiment Analysis

Abstract

The growth of marketplace users in Indonesia continues to grow with one of the largest marketplaces being Tokopedia with a total download of more than 50 million. This achievement cannot be separated from the role of evaluating application performance by consumers on Google Play, this can affect other consumers' trust in the Tokopedia application. The purpose of this study is to conduct a sentiment analysis on application performance based on application user comments, where the dataset used in this study is 992 comments. The algorithms used in this research are nave Bayes algorithm and k-nearest neighbor. The results showed that the accuracy of the nave Bayes algorithm was 75.30% and the accuracy of the k-nearest neighbor algorithm was 86.09%.

References

R. N. Handayani, “Optimasi Algoritma Support Vector Machine untuk Analisis Sentimen pada Ulasan Produk Tokopedia Menggunakan PSO,†Media Inform., vol. 20, no. 2, pp. 97–108, 2021, doi: 10.37595/mediainfo.v20i2.59.

R. Potharaju, M. Rahman, and B. Carbunar, “A Longitudinal Study of Google Play,†IEEE Trans. Comput. Soc. Syst., vol. 4, no. 3, pp. 135–149, 2017, doi: 10.1109/TCSS.2017.2732167.

I. Saher, A. Khan, M. Zeeshan Jhandir, R. Kazmi, and I. S. Bajwa, “Analyzing App Releasing and the Updating Behavior of Android Apps Developers,†no. March, 2021.

D. Pajri, Y. Umaidah, and T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia,†J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 242–253, 2020, doi: 10.28932/jutisi.v6i2.2658.

A. Syazili, K. Ahmad, and I. Umakaapa, “Using tuna fish bone waste as mineral sources in feed formulation of tilapia (Oreochromis niloticus),†IOP Conf. Ser. Earth Environ. Sci., vol. 890, no. 1, 2021, doi: 10.1088/1755-1315/890/1/012026.

S. Rakhmat, J. Zeniarza, and A. Luthfiarta, “Pengembangan Aplikasi Penentuan Tema Tugas Akhir Berdasarkan Data Abstrak Menggunakan Algoritma K-Nearest Neighbor,†no. 180, p. 50199, 2016.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,†J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

Amrin and Jh. Saiyar, “Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Naive Bayes,†Jurikom), vol. 5, no. 5, pp. 498–502, 2018, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/jurikom%7CPage%7C498

N. Normah, “Naïve Bayes Algorithm For Sentiment Analysis Windows Phone Store Application Reviews,†SinkrOn, vol. 3, no. 2, p. 13, 2019, doi: 10.33395/sinkron.v3i2.242.

I. Onantya, Indriati, and P. P. Adikara, “Analisis Sentimen Pada Ulasan Aplikasi BCA Mobile Menggunakan BM25 Dan Improved K-Nearest Neighbor,†J-Ptiik.Ub.Ac.Id, vol. 3, no. 3, pp. 2575–2580, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4754

M. Furqan, S. Sriani, and S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,†Techno.Com, vol. 21, no. 1, pp. 51–60, 2022, doi: 10.33633/tc.v21i1.5446.

A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor,†JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, p. 1, 2018, doi: 10.14421/jiska.2018.31-01.

R. R. Sani, J. Zeniarza, and A. Luthfiarta, “Pengembangan Aplikasi Penentuan Tema Tugas Akhir Berdasarkan Data Abstrak Menggunakan Algoritma K-nearest Neighbor,†Unisbank Semarang, no. 207, pp. 103–111, 2016.

S. Fajar Rodiyansyah and E. Winarko, “Klasifikasi Posting Twitter Kemacetan Lalu Lintas Kota Bandung Menggunakan Naive Bayesian Classification,†IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 7, no. 1, p. 13, 2013, doi: 10.22146/ijccs.3048.

A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,†JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.

G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,†Integer J., vol. 2, no. 1, pp. 32–41, 2017, [Online]. Available: https://t.co/jrvaMsgBdH

A. Tanggu Mara, E. Sediyono, and H. Purnomo, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Metode Pembelajaran Dalam Jaringan (DARING) Di Universitas Kristen Wira Wacana Sumba,†Jointer - J. Informatics Eng., vol. 2, no. 01, pp. 24–31, 2021, doi: 10.53682/jointer.v2i01.30.

Additional Files

Published

2022-10-31

How to Cite

Firdaus, M. F. E., Nurfaizah, N., & Sarmini, S. (2022). Analisis Sentimen Tokopedia Pada Ulasan di Google Playstore Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor. JURNAL RISET KOMPUTER (JURIKOM), 9(5), 1329−1336. https://doi.org/10.30865/jurikom.v9i5.4774