Process Mining using Inductive Miner Algorithm to Determine the actual Business Process Model

Authors

  • Muhammad Wanda Wibisono Universitas Telkom, Bandung
  • Angelina Prima Kurniati Universitas Telkom, Bandung
  • Gede Agung Ary Wisudiawan Universitas Telkom, Bandung

DOI:

https://doi.org/10.30865/jurikom.v9i4.4769

Keywords:

Learning Management System, CeLOE, process mining, inductive miner, event log

Abstract

At the beginning of 2019, the COVID-19 pandemic entered the country of Indonesia resulting in all learning activities being carried out online in all cities of Indonesia. Likewise, Telkom University concentrates all teaching and learning activities online using the CeLOE Learning Management System. Learning Management System is a system that helps lecturers in managing teaching and learning activities independently in educational institutions. CeLOE is a learning management system of Telkom University developed based on Moodle. In this study, we analyse the CeLOE event log using the process mining method. The goal is to find out the learning patterns of students using CeLOE during the COVID-19 pandemic. This research case study focuses on the activities of students of the Telkom University S1 Informatics study program for the first semester of 2020/2021 in using CeLOE LMS. The analysis of this study conducted a comparison of the performance of three variants of the inductive miner (IM) algorithm through conformance checking values. The results of the analysis obtained are value of conformance checking from the three variants of the inductive miner (IM) algorithm have an average fitness value of up to 1 prove that the inductive miner (IM) algorithm can make a model based on the event log well. Besides that, it has a fairly high precision value with a value range of 0.750-0.850 shows that the inductive miner (IM) makes a process model with relatively many variations of activities outside the event log and the IM process model is "overfit-ting" for all variants of the IM algorithm. Inductive miner (IM) is the best inductive miner (IM) algorithm variant with a fitness value of 1.0, precision value of 0.750, and the generalization value of this algorithm is relatively high (0.984). It is hoped that this research can contribute to the addition of new perspectives related to the implementation of process mining using inductive miner (IM) algorithm in the field of education

Author Biography

Muhammad Wanda Wibisono, Universitas Telkom, Bandung

Program studi S1 Informatika

References

I. K. Suartama dan I. D. K. Tastra, E-learning berbasis moodle, Yogyakarta: Graha Ilmu, 2014.

I. Atastina dan A. P. Kurniati, “Student registration process evaluation using process mining case study: IT Telkom,†Ninth International Conference on Digital Information Management (ICDIM 2014, pp. 189-183, 2014.

W. M. P. van der Aalst, “Discovery, Conformance and Enhancement of Business Processes,†dalam Process Mining, Springer Berlin, Heidelberg, 2011, pp. XVI, 352.

S. Leemans, D. Fahland dan W. van der Aalst, “Process and deviation exploration with Inductive visual Miner,†BPM Demo Sessions 2014 (co-located with BPM 2014, Eindhoven, The Netherlands, September 20, 2014, pp. 46-50, 2014.

L. Valensia, R. Andreswari dan R. Fauzi, “Implementation of Process Mining to Discover Student Learning Patterns using Fuzzy Miner Algorithm (Case Study: Learning Management System (LMS) Telkom University),†pp. 126-131, 2021.

S. Chanifah, R. Andreswari dan R. Fauzi, “Analysis of Student Learning Pattern in Learning Management System (LMS) using Heuristic Mining a Process Mining Approach,†pp. 121-125, 2021.

G. A. A. Wisudiawan dan A. P. Kurniati, “Process Mining on Learning Activities in a Learning Management System,†pp. 476-482, 2022.

W. van der Aalst, “Data Science in Action,†dalam Process Mining, Springer Berlin, Heidelberg, 2016.

J. Carmona, B. v. Dongen dan M. Weidlich, “Relating Processes and Models,†dalam Conformance Checking, Springer Cham, 2018, pp. XIV, 270.

J. Buijs, B. Dongen dan W. van der Aalst, “Quality Dimensions in Process Discovery: The Importance of Fitness, Precision, Generalization, and Simplicity,†International Journal of Cooperative Information Systems, vol. 23, p. 1440001, 2014.

I. Nuritha dan E. R. Mahendrawathi, “Structural Similarity Measurement of Business Process Model to Compare Heuristic and Inductive Miner Algorithms Performance in Dealing with Noise,†Procedia Computer Science, vol. 124, pp. 255-263, 2017.

S. J. Leemans, D. Fahland dan W. M. P. van der Aalst, “Discovering Block-Structured Process Models from Event Logs - A Constructive Approach,†dalam Application and Theory of Petri Nets and Concurrency, Springer Berlin Heidelberg, 2013, pp. 311-329.

S. J. Leemans, D. Fahland dan W. M. P. van der Aalst, “Discovering Block-Structured Process Models from Event Logs Containing Infrequent Behaviour,†vol. 171, pp. 66-78, 2014.

S. J. J. Leemans, E. Poppe dan M. T. Wynn, “Directly follows-based process mining: A tool,†dalam Proceedings of the ICPM Demo Track 2019 (CEUR Workshop Proceedings, Volume 2374).Vol. 2374., Sun SITE Central Europe, 2019, pp. 9-12.

I. P. A. Eka Pratama, Handbook data warehouse: teori dan praktik berbasiskan open source, Informatika Bandung, 2018.

I. A. Fitriansah, R. Andreswari dan M. A. Hasibuan, “ANALISIS DAN IMPLEMENTASI PROCESS MINING PADA AKTIVITAS MAHASISWA BERDASARKAN EVENT LOG PENGGUNAAN APLIKASI BIMBINGAN TUGAS AKHIR,†2019.

J. Carmona, B. v. Dongen, A. Solti dan M. Weidlich, “Relating Processes and Models,†dalam Conformance Checking , Springer Cham, 2018, pp. XIV, 270.

L. Mardhatillah, M. Er dan R. P. Kusumawardani, “IDENTIFIKASI BOTTLENECK PADA HASIL EKSTRAKSI PROSES BISNIS ERP DENGAN MEMBANDINGKAN ALGORITMA ALPHA++ DAN HEURISTICS MINER,†vol. 1, 2012.

Additional Files

Published

2022-08-30

How to Cite

Wibisono, M. W., Kurniati, A. P., & Wisudiawan, G. A. A. (2022). Process Mining using Inductive Miner Algorithm to Determine the actual Business Process Model. JURNAL RISET KOMPUTER (JURIKOM), 9(4), 1128–1135. https://doi.org/10.30865/jurikom.v9i4.4769