Klasifikasi Data Penduduk Untuk Menerima Bantuan Pangan Non Tunai Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.30865/jurikom.v9i4.4678Keywords:
Bantuan Pangan Non-Tunai, Naive Bayes, Performa vektor, AlgoritmaAbstract
Indonesia's population reaches 273,879,750 people, and it is known that every year it is increasing, so that population movements begin to occur from island to island. The population movement is carried out by everyone with the aim of getting a job to fulfill the necessities of life. However, not all of them can be fulfilled, even though there are still people who fall into the poor category, one of which is part of the population in the village of Bapinang Hulu. In the Bapinang Hulu village there is a Non-Cash Food Aid which is used to help the poor. The Non-Cash Food Assistance Program for the poor should be carried out with the right target. To overcome this, it is necessary to analyze population data. The analysis was carried out using the Nave Bayes Algorithm by dividing the dataset into training data and testing data. Testing the data 9 times to determine the accuracy of the results of research analysis in the search for the Accuracy performance vector value. The results showed that the accuracy performance vector value reached 90.00%. So it is known that the Naive Bayes algorithm is able to analyze population data for determining Non-Cash Food Aid in the upstream bapinang village.
References
Kemendagri, “273 Juta Penduduk Indonesia Terupdate Versi Kemendagri,†Direktorat Jendral kependudukan dan Pencatatan Sipil kementrian dalam negeri republik Indonesia, Feb. 21, 2022. https://dukcapil.kemendagri.go.id/berita/baca/1032/273-juta-penduduk-indonesia-terupdate-versi-kemendagri
N. Nurahman and D. Tjahjo Seabtian, “Classification of Poverty Reduction Program Recipients with Neural Network Algorithm in East Kotawaringin Communities,†E-Komtek, vol. 5, no. 2, pp. 190–202, 2021, doi: 10.37339/e-komtek.v5i2.751.
H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,†ILKOM Jurnal Ilmiah, vol. 10, no. 2, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,†Jurnal Riset Komputer, vol. 8, no. 6, 2021, doi: 10.30865/jurikom.v8i6.3655.
W. P. Nurmayanti, “Penerapan Naive Bayes dalam Mengklasifikasikan Masyarakat Miskin di Desa Lepak,†Geodika: Jurnal Kajian Ilmu dan Pendidikan Geografi, vol. 5, no. 1, pp. 123–132, Jun. 2021, doi: 10.29408/geodika.v5i1.3430.
A. Basit, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Hasil Panen Padi,†Jurnal Teknik Informatika Kaputama (JTIK) 2020, vol. 4, no. 2, 2020.
D. Ayuningsih and N. A. Hasibuan, “Sistem Pakar Mendiagnosa Kerusakan Pada Mesin Penggilingan Padi Menggunakan Metode Naive Bayes,†Jurnal JURIKOM (Jurnal Riset Komputer), vol. 5, no. 4, 2018.
A. A. A. Arifin, W. Handoko, and Z. Efendi, “Implementasi Metode Naive Bayes Untuk Klasifikasi Penerima Program Keluarga Harapan,†J-Com (Journal of Computer), vol. 2, no. 1, 2022, doi: 10.33330/j-com.v2i1.1577.
P. S. Saputra, “Perbandingan Algoritma Fuzzy C-Means dan Algoritma Naive Bayes dalam Menentukan Keluarga Penerima Manfaat (KPM) Berdasarkan Status Sosial Ekonomi (SSE) Terendah,†JST (Jurnal Sains dan Teknologi), vol. 10, no. 1, 2021, doi: 10.23887/jst-undiksha.v10i1.23340.
H. Putri, A. I. Purnamasari, A. R. Dikananda, O. Nurdiawan, and S. Anwar, “Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÃVE BAYES dan KNN,†Building of Informatics, Technology and Science (BITS), vol. 3, no. 3, 2021, doi: 10.47065/bits.v3i3.1093.
R. Indra Borman and M. Wati, “Penerapan Data Maining Dalam Klasifikasi Data Anggota Kopdit Sejahtera Bandarlampung Dengan Algoritma Naïve Bayes,†Jurnal Ilmiah Fakultas Ilmu Komputer, vol. 09, no. 01, pp. 25–34, 2020.
P. S. M. Suryani, L. Linawati, and K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,†Majalah Ilmiah Teknologi Elektro, vol. 18, no. 1, 2019, doi: 10.24843/mite.2019.v18i01.p22.
E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,†Jurnal Khatulistiwa Informatika, vol. 7, no. 1, 2019, doi: 10.31294/jki.v7i1.1.
I. Arfanda, W. Ramdhan, and R. A. Yusda, “Naive Bayes Dalam Menentukan Penerima Bantuan Langsung Tunai,†Digital Transformation Technology, vol. 1, no. 1, 2021, doi: 10.47709/digitech.v1i1.1091.
H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,†Jurnal Informatika, vol. 7, no. 1, 2020, doi: 10.31311/ji.v7i1.6203.
F. Firdaus and A. Mukhlis, “Implementasi Algoritma Naive Bayes Pada Data Set Kualitatif Prediksi Kebangkrutan,†JURIKOM (Jurnal Riset Komputer), vol. 7, no. 1, 2020, doi: 10.30865/jurikom.v7i1.1757.
F. Iglesias, T. Zseby, D. Ferreira, and A. Zimek, “MDCGen: Multidimensional Dataset Generator for Clustering,†Journal of Classification, vol. 36, no. 3, 2019, doi: 10.1007/s00357-019-9312-3.
K. A. Nugraha, “Pembentukan Dataset Token Sentimen Berdasarkan Akun Instagram Brand Elektronik Menggunakan K-Nearest Neighbors,†Jurnal Buana Informatika, vol. 12, no. 1, 2021, doi: 10.24002/jbi.v12i1.4472.
N. Novianti, M. Zarlis, and P. Sihombing, “Penerapan Algoritma Adaboost Untuk Peningkatan Kinerja Klasifikasi Data Mining Pada Imbalance Dataset Diabetes,†Jurnal Media Informatika Budidarma, vol. 6, no. April, pp. 1200–1206, 2022, doi: 10.30865/mib.v6i2.4017.
F. Marisa, “Educational Data Mining (Konsep dan Penerapan),†Jurnal Teknologi Informasi, vol. 4, no. 2, 2013.
A. Riani, Y. Susianto, and N. Rahman, “Implementasi Data Mining Untuk Memprediksi Penyakit Jantung Mengunakan Metode Naive Bayes,†Journal of Innovation Information Technology and Application (JINITA), vol. 1, no. 01, 2019, doi: 10.35970/jinita.v1i01.64.
H. Sulastri and A. I. Gufroni, “Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia,†Jurnal Nasional Teknologi dan Sistem Informasi, vol. 3, no. 2, 2017, doi: 10.25077/teknosi.v3i2.2017.299-305.



