Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine

Authors

  • Piqih Aditiya Universitas Singaperbangsa Karawang, Karawang
  • Ultach Enri Universitas Singaperbangsa Karawang, Karawang
  • Iqbal Maulana Universitas Singaperbangsa Karawang, Karawang

DOI:

https://doi.org/10.30865/jurikom.v9i4.4673

Keywords:

MyIM3, Text Mining, Support Vector Machine (SVM), Review, Word Cloud

Abstract

Technological developments are increasingly rapid, this makes it easier to communicate information and shopping transactions, one of the innovations that are being adopted is digital services, such as self-service. One of the self-services is myim3 which is a product of PT Indosat Ooredoo Hutchison as an internet network service provider company, with the increasing number of users of the application, many opinions or public sentiments are shared in the comments or reviews column, therefore it is necessary to analyze this MyIM3 application review to find out public opinion about the application. The review data is obtained from the Google Play website which is retrieved using the scraping method with the help of 3rd party libraries in python. The amount of data obtained in this study was 3484 data. Experts assist in data labeling to determine positive and negative. In the preprocessing stage, the data is cleaned to reduce the less influential attributes. In the next stage, perform the transformation process with TF-IDF. The classification process is divided into several scenarios with the algorithm used as a support vector machine with 2 kernels, linear and RBF. The best results are in the scenario (70:30) for the linear kernel with 87% accuracy and the scenario (90:10) with 87% accuracy in the RBF kernel. The classification process produces the most frequently occurring words in each sentiment class which is visualized with a word cloud. The word "good" is the most dominant in the positive review data, while the word "network" is the most dominant in the harmful review data of the MyIM3 application

References

I. Umiyati, T. E. Putri, dan N. Maya, “Social Influence, Usability And Security On The Intensity Of DANA e-Wallet Use,†JASS (Journal Account. …, vol. 03, hal. 113–130, 2021.

Asosiasi Penyelenggara Jasa Internet Indonesia, “Laporan Survei Internet APJII 2019 – 2020,†Jakarta, 2020.

V. B. Kusnandar, “Telkomsel Jadi Operator Seluler dengan Pelanggan Terbanyak di Indonesia,†2021. [Daring]. Tersedia pada: https://databoks.katadata.co.id/datapublish/2021/09/22/telkomsel-jadi-operator-seluler-dengan-pelanggan-terbanyak-di-indonesia. [Diakses: 07-Apr-2022].

Indosat dan Ooredoo, “Fitur MyIM3,†2022. [Daring]. Tersedia pada: https://indosatooredoo.com/portal/id/indexpersonal. [Diakses: 07-Apr-2022].

Google, “Persyaratan Layanan Google Play,†2020. [Daring]. Tersedia pada: https://play.google.com/intl/id_id/about/play-terms/. [Diakses: 07-Apr-2022].

S. Hilda Kusumahadi, H. Junaedi, dan J. Santoso, “Klasifikasi Helpdesk Menggunakan Metode Support Vector Machine,†J. Inform. J. Pengemb. IT, vol. 4, no. 1, hal. 54–60, 2019, doi: 10.30591/jpit.v4i1.1125.

B. Liu, “Sentiment analysis and opinion mining,†Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, hal. 1–167, 2012.

R. Feldman dan J. Sanger, The text mining handbook: advanced approaches in analyzing unstructured data, 3 ed. United States of America: Cambridge university press, 2007.

G. Manik, I. Ernawati, dan I. Nurlaili, “Analisis Sentimen Pada Review Pengguna E-Commerce Bidang Pangan Menggunakan Metode Support Vector Machine ( Studi Kasus : Review Sayurbox dan Tanihub pada Google Play ),†Semin. Nas. Mhs. Ilmu Komput. dan Apl., no. September, hal. 64–74, 2021.

X. Wu et al., “Top 10 algorithms in data mining,†Knowl. Inf. Syst., vol. 14, no. 1, hal. 1–37, 2008, doi: 10.1007/s10115-007-0114-2.

F. Sodik dan I. Kharisudin, “Analisis Sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter,†Prisma, vol. 4, hal. 628–634, 2021.

L. B. Ilmawan dan M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,†Ilk. J. Ilm., vol. 12, no. 2, hal. 154–161, 2020, doi: 10.33096/ilkom.v12i2.597.154-161.

M. Tri Anjasmoros dan dan Fitri Marisa, “Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode Svm Dan Nbc (Studi Kasus: Komentar Pada Play Store),†Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), no. Ciastech, hal. 489–498, 2020.

I. Adiwijaya, “Text Mining dan Knowledge Discovery,†Kolok. bersama komunitas datamining Indones. soft-computing Indones., vol. 1, hal. 1–9, 2006.

A. Erfina, E. S. Basryah, A. Saepulrohman, dan D. Lestari, “Analisis Sentimen Aplikasi Pembelajaran Online Di Play Store Pada Masa Pandemi Covid-19 Menggunakan Algoritma Support Vector Machine (Svm),†Semin. Nas. Inform., vol. 1, no. 1, hal. 145–152, 2020.

N. Fikria, “Analisis Klasifikasi Sentimen Review Aplikasi E-Ticketing Menggunakan Metode Support Vector Machine Dan Asosiasi,†Univ. Islam Indones., vol. 1, no. 2018-05–15, hal. 101, 2018.

A. Kulkarni dan A. Shivananda, Natural Language Processing Recipes. 2019.

A. Silvia, F. T. Muhammad, dan F. A. Mochammad, “Klasifikasi Penyakit Skizofrenia dan Episode Depresi pada Gangguan Kejiwaan dengan Menggunakan Metode Support Vector Machine (SVM),†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, hal. 5611–5618, 2018.

R. N. Devita, H. W. Herwanto, dan A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, hal. 427, 2018, doi: 10.25126/jtiik.201854773.

Additional Files

Published

2022-08-30

How to Cite

Aditiya, P., Enri, U., & Maulana, I. (2022). Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine. JURNAL RISET KOMPUTER (JURIKOM), 9(4), 1020–1028. https://doi.org/10.30865/jurikom.v9i4.4673