Analisis Prediksi Mood Genre Musik Pop Menggunakan Algoritma K-Means dan C4.5
DOI:
https://doi.org/10.30865/jurikom.v9i4.4597Keywords:
Spotify, Genre, Pop, Mood, SEMMA, K-Means Clustering, C4.5, Rapidminer, Power BI, Confusion MatrixAbstract
Spotify is a music streaming platform that has a variety of diverse features and is always updated in terms of the latest music. The features in spotify have an interesting thing for users to enjoy music more optimally both in listening to songs based on songs, most popular artists and genres. Research on classifying songs based on mood by using energy and valence in a song is often done, especially in western pop songs. In every thought music has emotional energy that radiates and is strongly related to human psychology. The problem with spotify is that there is no feature to listen to songs based on mood. If pop songs are categorized by mood, it will be easier for people to listen to pop songs and choose the appropriate one based on mood. In this study, pop music data will be grouped based on 4 categories of Thayer's mood models using the k-means and c4.5 algorithms. The purpose of this study is to analyze the mood prediction of the pop music genre using the k-means and c4.5 algorithms. The research methodology used is SEMMA, the stages in Semma are sample, explore, modify, model and assess. The attributes used are danceability, energy, tempo and valence. From these attributes, data clustering is made using the k-means algorithm using RapidMiner. Then visualized using Power BI. The results of the research from cluster data are grouped into moods consisting of angry, sad, cheerful and happy. The most abundant mood is in the cheerful mood. Then evaluate the assess using the calculation of the confusion matrix which produces an accuracy rate of 91.9%..
References
R. Kusumah, M. Ariyanti, and D. Sumrahadi, “Analis Perbandingan Positioning Aplikasi Musik Digital Berdasarkan Pendekatan Pengalaman Pengguna ( Studi Pengguna I-Tunes , Joox , Melon Dan Spotify ) Comperative Analysis of Positioning Application Digital Music Based User Exoerience Approach ( Studi O,†vol. 4, no. 3, pp. 2511–2518, 2017.
Z. R. Karyono, Y. T. Mursityo, and H. Muslimah Az-Zahra, “Analisis Perbandingan Pengalaman Pengguna Pada Aplikasi Music Streaming Menggunakan Metode UX Curve (Studi Pada Spotify dan JOOX),†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 6422–6429, 2019, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5721
N. A. Saputri, “Ekonomi Politik Media Dalam Industri Musik Digital Spotify,†Komunika, pp. 6–11, 2021, [Online]. Available: http://www.ejournal.radenintan.ac.id/index.php/komunika/article/view/9406%0Ahttp://www.ejournal.radenintan.ac.id/index.php/komunika/article/download/9406/4935
A. Rohmah Zaidah, C. Indira Septiarani, M. Sholikhatun Nisa, A. Yusuf, and N. Wahyudi, “Komparasi Algoritma K-Means, K-Medoid, Agglomeartive Clustering Terhadap Genre Spotify,†J. Ilm. Ilmu Komput., vol. 7, no. 1, pp. 49–54, 2021, doi: 10.35329/jiik.v7i1.186.
R. F. Rachmandany, A. P. Kharisma, and I. Arwani, “Pengembangan Aplikasi Autoplay dengan Konsep Context-Aware menggunakan Spotify API berbasis Android,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 6616–6623, 2019.
Amrizal, “Peranan Musik Klasik Dan Musik Pop Dalam Pembelajaran,†J. Pengabdi. Kpd. Masy., vol. 20, no. 76, pp. 1–5, 2014.
S. R. Situmorang, “Strategi Pemasaran Wayang Kampung Sebelah,†J. Tata Kelola Seni, vol. 1, no. 2, pp. 82–100, 2017, doi: 10.24821/jtks.v1i2.1643.
I. N. Mardika and I. D. P. Sumantra, “Lagu Pop Bali Dalam Pelestarian Budaya Bali,†Kulturist. J. Bhs. dan Budaya, vol. 4, no. 1, p. 74, 2020, doi: 10.22225/kulturistik.4.1.1595.
M. A. Rahman, “Pengaruh Suasana Hati dan Kompetensi terhadap Kinerja Usaha melalui Kewirausahaan terhadap UMKM di Desa Tanjung Bumi Kab. Bangkalan,†Iqtishodiyah J. Ekon. dan Bisnis Islam, vol. 7, no. 1, pp. 74–90, 2021.
T. D. Astuti, T. I. Hermanto, and I. Kaniawulan, “Analisa data mining menggunakan algoritma apriori untuk meningkatkan cross selling dan up selling (Studi kasus Rumah Makan Mas Nur Purwakarta),†J. Teknol. dan Inf., vol. 6, no. 2, pp. 69–77, 2016.
D. I. Ramadhani, O. Damayanti, O. Thaushiyah, and A. R. Kadafi, “Penerapan Metode K-Means Untuk Clustering Desa Rawan Bencana Berdasarkan Data Kejadian Terjadinya Bencana Alam,†vol. 9, no. 3, pp. 749–753, 2022, doi: 10.30865/jurikom.v9i3.4326.
Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,†Edik Inform., vol. 2, no. 2, pp. 213–219, 2017, doi: 10.22202/ei.2016.v2i2.1465.
I. G. Harsemadi and I. M. Sudarma, “Penggolongan Musik Terhadap Suasana Hati Menggunakan Metode K-Means,†Konf. Nas. Sist. Inform. 2017, pp. 49–54, 2017.
I. P. B. W. Brata and I. D. M. B. A. Darmawan, “Mood Classification of Balinese Songs with the K-Means Clustering Method Based on the Audio-Content Feature,†JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 9, no. 3, p. 331, 2021, doi: 10.24843/jlk.2021.v09.i03.p03.
G. A. Sandag and A. M. Manueke, “Predictive Models for Popularity of Solo and Group Singers in Spotify Using Decision Tree,†2020 2nd Int. Conf. Cybern. Intell. Syst. ICORIS 2020, 2020, doi: 10.1109/ICORIS50180.2020.9320838.



