Penerapan Data Mining Untuk Menentukan Segmentasi Pelanggan Dengan Menggunakan Algoritma K-Means dan Model RFM Pada E-Commerce
DOI:
https://doi.org/10.30865/jurikom.v9i4.4525Keywords:
Data Mining, Segmentation, Customer, RFM models, K-Means AlgorithmAbstract
The growth of technology has a big impact on life, one of which is the use of the internet. In Indonesia, internet usage has increased every year, this has an impact on changes in the buying and selling process carried out by the community. The basic reason caused by these changes is a wider market reach. So it can be said that the presence of the online market is a positive impact caused by the development of these technologies. E-Commerce is a process of buying and selling transactions and also leasing services that are carried out by utilizing internet technology that is already available on certain media. On this basis, business actors in E-Commerce should have their own characteristics that are easily recognized by consumers. It is necessary for business people to segment potential customers. However, the problem of customer segmentation has become a problem in itself for business actors, this is due to the lack of knowledge of how to segment the customers. Data mining is a process that can be done to solve problems. With data mining the process is carried out by processing the dataset and generating new information. In data mining itself, there are several completion processes, namely the K-Means algorithm for the clustering process and the RFM model for segmentation analysis. The results obtained are that there are 4 customer segments. This can be seen from the testing process carried out from K = 2 to K = 5, in the K = 4 test the most optimal BDI value is 0.6788
References
A. Wibowo and A. R. Handoko, “Segmentasi Pelanggan Ritel Produk Farmasi Obat Menggunakan Metode Data Mining Klasterisasi Dengan Analisis Recency Frequency Monetary (RFM) Termodifikasi,†J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, p. 573, 2020, doi: 10.25126/jtiik.2020702925.
B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi Rfm Model Dan Teknik Clustering,†J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, 2018, doi: 10.21460/jutei.2018.21.76.
G. Lukhayu Pritalia, “Penerapan Algoritma C4.5 untuk Penentuan Ketersediaan Barang E-commerce,†Indones. J. Inf. Syst., vol. 1, no. 1, pp. 47–56, 2018, doi: 10.24002/ijis.v1i1.1727.
A. Setiawan and R. Mulyanti, “Market Basket Analysis dengan Algoritma Apriori pada Ecommerce Toko Busana Muslim Trendy,†JUITA J. Inform., vol. 8, no. 1, p. 11, 2020, doi: 10.30595/juita.v8i1.4550.
M. Badaruddin and Rayendra, “Penerapan Algoritma Apriori Pada Analisa Data Penjualan Ecommerce,†J. Media Inform. Budidarma, vol. 6, no. April, pp. 1032–1037, 2022, doi: 10.30865/mib.v6i2.3976.
A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,†Sistemasi, vol. 10, no. 3, p. 516, 2021, doi: 10.32520/stmsi.v10i3.1332.
U. R. Amanda and D. P. Utomo, “Penerapan Data Mining Algoritma Hash Based Pada Data Pemesanan Buah Impor Cv. Green Uni Fruit,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 5, no. 1, pp. 86–93, 2021, doi: 10.30865/komik.v5i1.3653.
F. Telaumbanua, J. M. Purba, and D. P. Utomo, “Analysis of Online Learning Understanding Patterns at Budi Darma University Using the C5 . 0 Algorithm,†vol. 5, no. 2, pp. 118–122, 2021, doi: 10.30865/ijics.v5i2.3129.
D. Marlina, N. Lina, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,†J. CoreIT, vol. 4, no. 2, 2018.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,†J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.
O. Doğan, E. Ayçin, and Z. A. Bulut, “Customer Segmentation by Using RFM Model and Clustering Methods: A Case Study in Retail Industry,†Int. J. Contemp. Econ. Adm. Sci., vol. 8, no. 1, pp. 1–19, 2018, [Online]. Available: www.ijceas.com.
E. Ernawati, S. S. K. Baharin, and F. Kasmin, “A review of data mining methods in RFM-based customer segmentation,†J. Phys. Conf. Ser., vol. 1869, no. 1, 2021, doi: 10.1088/1742-6596/1869/1/012085.



