Penerapan K-Means pada Segmentasi Pasar untuk Riset Pemasaran pada Startup Early Stage dengan Menggunakan CRISP-DM

Authors

  • Yefta Christian Universitas Internasional, Batam
  • Katherine Oktaviani Yap Rui Qi Universitas Internasional, Batam

DOI:

https://doi.org/10.30865/jurikom.v9i4.4486

Keywords:

Machine learning, Market Research, Early Stage Startup, K-Means, CRISP-DM

Abstract

Early stage startup would conduct ideation, problem solving, and market research. One of the stages in market research is market segmentation. Normally, early stage startups do not have enough resources, thus many processes are done manually. This encourages inacurracies and lessen the objectiveness in evaluating market situation which is important for the growth of early stage startups. This research focuses on developing a machine learning based application for market segmentation. The framework used here is CRISP-DM, which is a framework used in data mining. This framework has six phases, which consists of business understanding, data understanding, data preparation, modelling, deployment, and evaluation, to identify the input and output of a process. The data model used in this application is K-Means, which is a common algorithm used for clustering or dividing a set of data into groups according to their attributes. The application developed is able to output results in the form of visualization and the segmentation in excel format. With this, the early stage startup is able to process their data to identify segments in the market. For future research, this application could be improved in the efficiency and accuracy of the model. The application could be improved in the aspects of UI/UX design, the algorithm used, the number of clusters, and the analysis of the dataset, as well as adding a predictive analysis feature

References

Z. Acs, L. Szerb, and A. Lloyd, “The Global Enterpreneuship Index 2018,†Washington D.C., 2018. [Online]. Available: http://thegedi.org/wp-content/uploads/dlm_uploads/2017/11/GEI-2018-1.pdf.

Z. J. Ãcs, L. Szerb, E. Lafuente, and G. Márkus, “The Global Entrepreneurship Index 2019,†Washington D.C., 2019. doi: 10.13140/RG.2.2.17692.64641.

N. Bosma, S. Hill, A. Ionescu-Somers, D. Kelley, M. Guerrero, and T. Schott, “2020/2021 Global Report,†London, 2021. [Online]. Available: https://www.gemconsortium.org/report/gem-20202021-global-report.

R. T. P. B. Santoso, I. W. R. Junaedi, S. H. Priyanto, and D. S. S. Santoso, “Creating a startup at a University by using Shane’s theory and the entrepreneural learning model: a narrative method,†J. Innov. Entrep., vol. 10, no. 1, 2021, doi: 10.1186/s13731-021-00162-8.

R. A. M. Kencanasari and W. Dhewanto, “Digital Startups Fundamental Capabilities in New Product Development: Multiple Case Studies in Bandung, Indonesia,†J. Manaj. Indones., vol. 22, no. 1, p. 62, 2022, doi: 10.25124/jmi.v22i1.3286.

M. A. Camilleri, “Market Segmentation, Targeting and Positioning,†Travel Mark. Tour. Econ. Airl. Prod., no. 4, pp. 69–83, 2018, doi: 10.1108/978-1-78635-746-520161006.

J.-H. Chen, T. Ji, M.-C. Su, H.-H. Wei, V. T. Azzizi, and S.-C. Hsu, “Swarm‑inspired data‑driven approach for housing market.pdf,†J. Hous. Built Environ., vol. 36, pp. 1787–1811, 2021, doi: https://doi.org/10.1007/s10901-021-09824-1.

E. Y. L. Nandapala and K. P. N. Jayasena, “The practical approach in Customers segmentation by using the K-Means Algorithm,†2020 IEEE 15th Int. Conf. Ind. Inf. Syst. ICIIS 2020 - Proc., no. 978, pp. 344–349, 2020, doi: 10.1109/ICIIS51140.2020.9342639.

I. G. A. W. Putri and I. B. G. Dwidasmara, “Application of the K-Means Algorithm to Segmentation of Consumer Interest in Silver Craft ‘Kreasi Slaka Bali,’†JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 9, no. 4, p. 541, 2021, doi: 10.24843/jlk.2021.v09.i04.p12.

S. Kimiagari, S. Keivanpour, and M. Haverila, “Developing a high-performance clustering framework for global market segmentation and strategic profiling,†J. Strateg. Mark., vol. 29, no. 2, pp. 93–116, 2021, doi: 10.1080/0965254X.2019.1628099.

A. Abdulhafedh, “Incorporating K-means, Hierarchical Clustering and PCA in Customer Segmentation,†J. City Dev., vol. 3, no. 1, pp. 12–30, 2021, doi: 10.12691/jcd-3-1-3.

X. Pu, N. Qi, and J. Huang, “Data Analysis and Application of Retail Enterprises Based on Knime,†IOP Conf. Ser. Mater. Sci. Eng., vol. 782, no. 5, 2020, doi: 10.1088/1757-899X/782/5/052030.

E. Bakhshizadeh, H. Aliasghari, R. Noorossana, and R. Ghousi, “Customer Clustering Based on Factors of Customer Lifetime Value with Data Mining Technique (Case Study: Software Industry),†Int. J. Ind. Eng. Prod. Res., vol. 33, no. 1, pp. 1–16, 2022, doi: 10.22068/ijiepr.33.1.1.

C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,†Procedia Comput. Sci., vol. 181, no. 2019, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.

K. Black et al., Business Analytics and Statistics. 2019.

D. Astuti, “Penentuan Strategi Promosi Usaha Mikro Kecil Dan Menengah (UMKM) Menggunakan Metode CRISP-DM dengan Algoritma K-Means Clustering,†J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 1, no. 2, pp. 60–72, 2019, doi: 10.20895/inista.v1i2.71.

Luiz Bueno, “Customer/K-Means/Hierarchical Grouping/DBSCAN | Kaggle.†Kaggle.com, 2022, Accessed: Jun. 24, 2022. [Online]. Available: https://www.kaggle.com/code/juniorbueno/customer-k-means-hierarchical-grouping-dbscan.

M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method for Identification of the Best Customer Profile Cluster,†IOP Conf. Ser. Mater. Sci. Eng., vol. 336, no. 1, 2018, doi: 10.1088/1757-899X/336/1/012017.

R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient,†vol. 5, no. 2, pp. 109–116, 2021.

Additional Files

Published

2022-08-30

How to Cite

Christian, Y., & Qi, K. O. Y. R. (2022). Penerapan K-Means pada Segmentasi Pasar untuk Riset Pemasaran pada Startup Early Stage dengan Menggunakan CRISP-DM. JURNAL RISET KOMPUTER (JURIKOM), 9(4), 966–973. https://doi.org/10.30865/jurikom.v9i4.4486