Penerapan Data Mining Pada Penjualan Produk Digital Konter Leppangeng Cell Menggunakan Metode K-Means Clustering

Authors

  • Nur Astuti STMIK Borneo Internasional, Balikpapan
  • Joy Nashar Utamajaya STMIK Borneo Internasional, Balikpapan
  • Aditya Pratama STMIK Borneo Internasional, Balikpapan

DOI:

https://doi.org/10.30865/jurikom.v9i3.4351

Keywords:

Data Mining, K-Means, Leppangeng Cell, Rapidminer

Abstract

The Leppangeng Cell counter is a counter that sells digital products in the form of Credit, Data Packages, PLN Electricity Tokens, Electricity Payments, BPJS Payments, PDAM Payments. Spidy or Indihome Payments, Home Phone Payments, Postpaid Payments, Game Voucher Sales, Cable TV Payments, Credit Installment Payments, Train Ticket Payments, PGN/Gas Payments, Shope Payments and Cash Transfer Services and Top Up. However, from the counter sales, of course, not all of them sell well, there are also products that don't sell. Sales data, purchases and unexpected expenses at the Leppangeng Cell Counter are not well structured, so the data only serves as a store archive and cannot be used to develop marketing strategies. Therefore, it is necessary to apply data mining using K-Means at the Leppangeng Cell Counter. The K-Means method can be applied to the Leppangeng Cell Counter to determine sales of digital products that are selling well and not selling well. The application of the K-Means method at the Leppangeng Cell Counter is by grouping digital product stock data. Then select 3 random grub as initial centroid. After the data for each group does not change, the results of data processing are obtained in the form of 114  products that sell, 5 underperforming, and 14 not sold. Then, the application of the K-Means method to Rapidminer is carried out by entering the initial product stock, the sold stock and the final stock to be changed and form K-Means. After that, Rapidminer will produce which products have high and low demand

References

E. Fammaldo and L. Hakim, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Tingkat Kesejahteraan Keluarga Untuk Program Kartu Indonesia Pintar,†J. Ilm. Teknol. Infomasi Terap., vol. 5, no. 1, pp. 23–31, 2019, doi: 10.33197/jitter.vol5.iss1.2018.249.

J. Jendral and A. Yani, “PENERAPAN DATA MINING PADA PENJUALAN MENGGUNAKAN METODE CLUSTERING STUDY KASUS PT . INDOMARCO,†pp. 1–11.

H. N. Turnip and H. Fahmi, “Penerapan Data Mining Pada Penjualan Kartu Paket Internet Yang Banyak Diminati Konsumen Dengan Metode K-Means,†vol. 4, no. 2, pp. 36–41, 2021.

M. Mardalius, “Pemanfaatan Rapid Miner Studio 8.2 Untuk Pengelompokan Data Penjualan Aksesoris Menggunakan Algoritma K-Means,†Jurteksi, vol. 4, no. 2, pp. 123–132, 2018, doi: 10.33330/jurteksi.v4i2.36.

V. No, S. P. Tamba, and F. T. Kesuma, “PENERAPAN DATA MINING UNTUK MENENTUKAN PENJUALAN SPAREPART TOYOTA DENGAN METODE K-MEANS CLUSTERING,†vol. 2, no. 2, 2019.

A. E. Wicaksono, “Implementasi Data Mining Dalam Pengelompokan Peserta Didik Di Sekolah Untuk Memprediksi Calon Penerima Beasiswa Dengan Menggunakan Algoritma K-Means,†J. Teknol. Rekayasa, vol. 21, no. 3, pp. 206–216, 2016, [Online]. Available: http://www.sman16bekasi.sch.id.

J. Informatika, S. A. Rahmah, J. Antares, and U. Dharmawangsa, “Beasiswa Yayasan Menggunakan K-Means,†vol. 13, no. 2, pp. 25–30, 2021.

M. K.- Means, D. Ayu, and K. Debby, “Clustering Perekonomian Masyarakat Mataram Dengan.â€

J. N. Utamajaya, “Sistem Pendukung Keputusan Penerima Beasiswa Program Indonesia Pintar Menggunakan Metode Algoritma K-Means Clustering,†vol. 99, no. 99, pp. 1–10, 2021, doi: 10.30865/jurikom.v9i1.9999.

H. Mahulae, “Pengelompokan Potensi Produksi Buah-Buahan di Provinsi Sumatera Utara dengan Menerapkan K-Clustering (Studi Kasus : Dinas Tanaman Pangan dan Holtikultura),†JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, p. 312, 2020, doi: 10.30865/jurikom.v7i2.2122.

N. A. Manihuruk, M. Zarlis, E. Irawan, and H. S. Tambunan, “Penerapan Data Mining Dalam Mengelompokkan Calon Penerima Beasiswa Dengan Menggunakan Algoritma K-Means,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 4, no. 1, pp. 29–34, 2020, doi: 10.30865/komik.v4i1.2575.

D. J. Lubis and M. B. Tamam, “Penerapan K-Means Untuk Pengelompokkan Beasiswa Santri di Pondok Pesantren Miftahul Huda Bogor,†Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 12, no. 1, pp. 7–20, 2022, doi: 10.36350/jbs.v12i1.125.

L. G. Rady Putra and A. Anggrawan, “Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means,†MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 205–214, 2021, doi: 10.30812/matrik.v21i1.1554.

Additional Files

Published

2022-06-30

How to Cite

Astuti, N., Utamajaya, J. N., & Pratama, A. (2022). Penerapan Data Mining Pada Penjualan Produk Digital Konter Leppangeng Cell Menggunakan Metode K-Means Clustering. JURNAL RISET KOMPUTER (JURIKOM), 9(3), 754–760. https://doi.org/10.30865/jurikom.v9i3.4351

Issue

Section

Articles