Perbandingan Metode Linear Regression dan Exponential Smoothing Dalam Peramalan Penerimaan Mahasiswa Baru

Authors

  • Fayza Apriliza Institut Teknologi Telkom Purwokerto, Purwokerto
  • Darmansah Darmansah Institut Teknologi Telkom Purwokerto, Purwokerto
  • Annisa Oktavyani Institut Teknologi Telkom Purwokerto, Purwokerto
  • Dzakiyyah Al Kaazhim Institut Teknologi Telkom Purwokerto, Purwokerto

DOI:

https://doi.org/10.30865/jurikom.v9i3.4334

Keywords:

Forecasting, Linear Regression, Exponential Smoothing, Accuracy Testing

Abstract

In improving the quality of higher education, the Telkom Purwokerto Institute of Technology needs to plan and make decisions about what strategies and policies can support teaching and learning activities or other activities within the institution. To plan these strategies and policies, the institution needs reference data such as data on predictions of the number of students that will be accepted in the next five years. With this predictive data, the institution can also consider various things that must be improved and plan a better marketing strategy so that new student admissions in the following year can increase. This study aims to predict the number of students who will be accepted at the Telkom Purwokerto Institute of Technology in the next five years. The overall comparison of the linear regression and exponential smoothing methods is carried out to test the accuracy of the forecasting results. The forecasting accuracy used is MAE, MSE, and MAPE. Forecasting accuracy testing was carried out using the linear regression method with the MAE, MSE, and MAPE values of 115.28 each; 15238.46; and 0.1216054793, and the exponential smoothing method with = 0.1 has the value of the results of the MAE, MSE, and MAPE forecasting accuracy tests of 327.2938; 137036,2639; and 0.2875524468. The best method for forecasting new student admissions at the Telkom Purwokerto Institute of Technology. namely the linear regression method because it has the smallest MAE, MSE, and MAPE forecasting accuracy values. The results of forecasting new student admissions at the Telkom Purwokerto Institute of Technology for the next 5 years, from 2022 to 2026, respectively, are 1369.7; 1479.4; 1589.1;1698,8; and 1808.5.

References

2003 Undang-Undang No 20 Tahun 2003, “Undang-Undang No 20 Tahun 2003 tentang Sisdiknas,†Sist. Pendidik. Nas., p. 14, 2003, [Online]. Available: https://jdihn.go.id/files/4/2003uu020.pdf.

Kementrian Hukum dan HAM, “UU RI No. 12/2012 tentang Pendidikan Tinggi,†Undang Undang, p. 18, 2012.

PDDikti, “Profil Perguruan Tinggi Lokasi Perguruan Tinggi Institut Teknologi Telkom Purwokerto,†2017. https://pddikti.kemdikbud.go.id/data_pt/Rjg0OEExMDItREFGRC00NDlELTg2M0UtODgxRkFFMjUwNTM4 (accessed Jun. 18, 2022).

Akademik Institut Teknologi Telkom Purwokerto, “2020.10.10-SK-Pedoman-Peraturan-Pendidikan-ITTP.pdf.†[Online]. Available: https://akademik.ittelkom-pwt.ac.id/wp-content/uploads/sites/23/2021/03/2020.10.10-SK-Pedoman-Peraturan-Pendidikan-ITTP.pdf .

Z. B. H. Thaib, “Urgensi Penguasaan Soft Skill bagi Mahasiswa di Perguruan Tinggi,†vol. 2, no. 2009, pp. 1–24, 2017.

M. Mursidah, Y. Yunina, N. Nurhasanah, and ..., “Perbandingan Metode Exponential Smoothing dan Metode Decomposition Untuk Meramalkan Persediaan Beras (Studi Kasus Divre Bulog Lhokseumawe),†Visioner …, vol. 10, pp. 37–46, 2021, [Online]. Available: https://ojs.unimal.ac.id/visi/article/view/4829%0Ahttps://ojs.unimal.ac.id/visi/article/download/4829/2624.

R. T. Amira Herwindayani H., Wiwik Anggraeni, “Pembuatan Aplikasi Pendukung Keputusan untuk Peramalan Persediaan Bahan Baku Produksi Plastik Blowing dan Inject Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average) di CV. Asia,†J. Tek. POMITS, vol. 3, no. 2, p. A-169, 2014.

T. N. Putri, A. Yordan, and D. H. Lamkaruna, “Peramalan Penerimaan Mahasiswa Baru Universitas Samudra Menggunakan Metode Regresi Linear Sederhana,†J-TIFA (Jurnal Teknol. Inform., vol. 2, no. 1, pp. 21–27, 2019.

A. A. Muhartini, O. Sahroni, S. D. Rahmawati, T. Febrianti, and I. Mahuda, “Analisis Peramalan Jumlah Penerimaan Mahasiswa Baru Dengan Menggunakan Metode Regresi Linear Sederhana,†J. Bayesian J. Ilm. Stat. dan Ekon., vol. 1, no. 1, pp. 17–23, 2021, [Online]. Available: http://bayesian.lppmbinabangsa.id/index.php/home/article/view/2.

W. Handoko, “Prediksi Jumlah Penerimaan Mahasiswa Baru Dengan Metode Single Exponential Smoothing (Studi Kasus: Amik Royal Kisaran),†JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 5, no. 2, pp. 125–132, 2019, doi: 10.33330/jurteksi.v5i2.356.

A. Purba, “Perancangan Aplikasi Peramalan Jumlah Calon Mahasiswa Baru yang mendaftar menggunakan Metode Single Exponential Smoothing (Studi Kasus: Fakultas Agama Islam UISU),†J. Ris. Komput., vol. 2, no. 6, pp. 8–12, 2015.

R. Oktaviani, D. M. Midyanti, and S. Bahri, “Implementasi Metode Regresi Linear Untuk Prediksi Kebutuhan Energi Listrik Pln Rayon Sintang Berbasis Website,†J. Komput. dan Apl., vol. 09, no. 01, 2021.

N. Sulthan, N. Eltivia, and N. I. Riwajanti, “Implementasi Metode Exponential Smoothing Untuk Peramalan Kedatangan Wisatawan Mancanegara Pada Pulau Bali,†Media Mahard., vol. 18, no. 2, pp. 171–178, 2020, doi: 10.29062/mahardika.v18i2.145.

A. Gusfadilah, B. D. Setiawan, and B. Rahayudi, “Implementasi Metode Exponential Smoothing Untuk Prediksi Bobot Kargo,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 1875–1882, 2019.

D. Gunawan and W. Joni, “Perancangan Sistem Informasi Purchase Order Menggunakan Metode Single Exponential Smoothing,†J. Mhs. Apl. Teknol. Komput. dan Inf., vol. 2, no. 1, pp. 13–18, 2020.

R. Rachman, “Penerapan Metode Moving Average Dan Exponential Smoothing Pada Peramalan Produksi Industri Garment,†J. Inform., vol. 5, no. 2, pp. 211–220, 2018, doi: 10.31311/ji.v5i2.3309.

A. Lusiana and P. Yuliarty, “PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X,†Ind. Inov. J. Tek. Ind., vol. 10, no. 1, pp. 11–20, 2020, doi: 10.36040/industri.v10i1.2530.

Additional Files

Published

2022-06-30

How to Cite

Apriliza, F., Darmansah, D., Oktavyani, A., & Kaazhim, D. A. (2022). Perbandingan Metode Linear Regression dan Exponential Smoothing Dalam Peramalan Penerimaan Mahasiswa Baru. JURNAL RISET KOMPUTER (JURIKOM), 9(3), 726–732. https://doi.org/10.30865/jurikom.v9i3.4334

Issue

Section

Articles