Penerapan Metode K-Means Untuk Clustering Desa Rawan Bencana Berdasarkan Data Kejadian Terjadinya Bencana Alam

Authors

  • Devy Isya Ramadhani Universitas Nusa Mandiri, Depok
  • Oki Damayanti Universitas Nusa Mandiri, Depok
  • Osa Thaushiyah Universitas Nusa Mandiri, Depok
  • Abdul Rahman Kadafi Universitas Nusa Mandiri, Depok

DOI:

https://doi.org/10.30865/jurikom.v9i3.4326

Keywords:

K-Means clustering, Disaster, Rapidminer,

Abstract

Located in the Southeast Asian region, the country of Indonesia is one of the areas prone to disasters related to demographic, geological and geographical conditions that trigger disasters both caused by natural factors, non-natural factors and human factors. Purbalingga is an area of Central Java Province which has the potential for disasters to occur when weather conditions are uncertain. The K-Means clustering method is used to make it easier to analyze and group data to identify several disaster-prone areas in the Purbalingga area. In this research, data processing uses rapidminer tools. Based on data processing, there were 5 clusters of disaster-prone areas in Purbalingga Regency with a very high level of vulnerability, a high level of vulnerability, a medium level of vulnerability, a low level of vulnerability and a very low level of vulnerability. With the existence of groups of disaster-prone areas that have been determined, it is hoped that the anticipation made for disasters that may arise can continue to be carried out appropriately so as to minimize the effects of disasters on the community.

Author Biographies

Devy Isya Ramadhani, Universitas Nusa Mandiri, Depok

Prodi Sistem Informasi

Oki Damayanti, Universitas Nusa Mandiri, Depok

Prodi Sistem Informasi

Osa Thaushiyah, Universitas Nusa Mandiri, Depok

Prodi Sistem Informasi

Abdul Rahman Kadafi, Universitas Nusa Mandiri, Depok

Prodi Sistem Informasi

References

B. Satria and M. Sari, “Tingkat Resiliensi Masyarakat Di Area Rawan Bencana,†Idea Nurs. J., vol. 8, no. 2, pp. 30–34, 2017, [Online]. Available: http://e-repository.unsyiah.ac.id/INJ/article/view/8818/7425.

A. Rosyida, R. Nurmasari, and Suprapto, “Jumlah Korban Dan Kerusakan ( Studi : Data Kejadian Bencana Indonesia 2018 ),†J. Dialog Penanggulangan Bencana, vol. 10, no. 1, pp. 1–10, 2018, [Online]. Available: https://perpustakaan.bnpb.go.id/jurnal/index.php/JDPB/article/view/127/97.

M. G. Sadewo et al., “PENERAPAN ALGORITMA CLUSTERING DALAM MENGELOMPOKKAN BANYAKNYA DESA / KELURAHAN MENURUT UPAYA ANTISIPASI / MITIGASI BENCANA ALAM MENURUT PROVINSI DENGAN K-MEANS,†vol. 2, pp. 311–319, 2018.

S. Setiawan, “Analisis Cluster Menggunakan Algoritma K-Means Untuk Mengetahui Kemampuan Pegawai Dibidang IT Pada CV. Roxed Ltd,†J. Pelita Inform., vol. 18, pp. 80–86, 2019.

I. Junaedi, N. Nuswantari, and V. Yasin, “Perancangan Dan Implementasi Algoritma C4 . 5 Untuk Data Mining,†J. Inf. Syst. Informatics Comput., vol. 3, no. 1, pp. 29–44, 2019, [Online]. Available: http://journal.stmikjayakarta.ac.id/index.php/jisicom/article/view/203%0Ahttp://journal.stmikjayakarta.ac.id/index.php/jisicom/article/download/203/158.

sabrina aulia Rahmah, “Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja),†Djtechno J. Teknol. Inf., vol. 1, no. 1, pp. 1–5, 2021, doi: 10.46576/djtechno.v1i1.964.

A. H. Ardiansyah, W. Nugroho, N. H. Alfiyah, R. A. Handoko, and M. A. Bakhtiar, “Penerapan Data Mining Menggunakan Metode Clustering untuk Menentukan Status Provinsi di Indonesia 2020,†Semin. Nas. Inov. Teknol., vol. 4, no. 3, pp. 329–333, 2020.

N. Karolina, “Data Mining Pengelompokan Pasien Rawat Inap Peserta BPJS Menggunakan Metode Clustering (Studi Kasus : RSU.Bangkatan),†J. Inf. Technol., vol. 1, no. 2, pp. 47–53, 2021, doi: 10.32938/jitu.v1i2.1470.

P. Studi, M. Arsitektur, U. Kristen, and D. Wacana, “PENDAHULUAN Pengertian Potensi Becana Alam di Indonesia,†pp. 1–17, 2020.

M. F. Museum, “HUBUNGAN TINGKAT PENGETAHUAN MASYARAKAT DENGAN PENANGGULANGAN BENCANA TANAH LONGSOR DI DESA WAKOKO KABUPATEN BUTON,†vol. 45, no. 45, pp. 95–98, 2019.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,†J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.

L. Suriani, “Pengelompokan Data Kriminal Pada Poldasu Menentukan Pola Daerah Rawan Tindak Kriminal Menggunakan Data Mining Algoritma K-Means Clustering,†J. Sist. Komput. dan Inform., vol. 1, no. 2, p. 151, 2020, doi: 10.30865/json.v1i2.1955.

F. Indriyani and E. Irfiani, “Clustering Data Penjualan pada Toko Perlengkapan Outdoor Menggunakan Metode K-Means,†JUITA J. Inform., vol. 7, no. 2, p. 109, 2019, doi: 10.30595/juita.v7i2.5529.

M. I. Ramadhan and Prihandoko, “Penerapan Data Mining untuk Analisis Data Bencana Milik BNPB Menggunakan Algoritma K-Means dan Linear Regression,†J. Inform. dan Komput., vol. 22, no. 1, pp. 57–65, 2017.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,†J. Sains dan Manaj., vol. 9, no. 1, pp. 95–100, 2021, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/10428/4839.

Additional Files

Published

2022-06-30

How to Cite

Ramadhani, D. I., Damayanti, O., Thaushiyah, O., & Kadafi, A. R. (2022). Penerapan Metode K-Means Untuk Clustering Desa Rawan Bencana Berdasarkan Data Kejadian Terjadinya Bencana Alam. JURNAL RISET KOMPUTER (JURIKOM), 9(3), 749–753. https://doi.org/10.30865/jurikom.v9i3.4326

Issue

Section

Articles