Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi

Authors

  • Dodi Efendi Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Jasril Jasril Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru http://orcid.org/0000-0002-6937-2078
  • Suwanto Sanjaya Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru http://orcid.org/0000-0003-2477-6439
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Elvia Budianita Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru

DOI:

https://doi.org/10.30865/jurikom.v9i3.4176

Keywords:

Convolutional Neural Network, Meat, Deep Learning, Image Classification, Optimizer

Abstract

Meat is one of the food ingredients needed by humans. The price of pork is cheaper than beef, which has led to the practice of mixing beef with pork for the purpose of making big profits. In plain view, the difference between beef and pork is not striking, so it is difficult for ordinary people to distinguish between them. In terms of color, pork is paler than beef. In terms of texture, beef is stiffer and tougher than pork. In terms of fiber, beef is clearer than pork, so we need a system that can identify the two types of meat. This study uses the Convolutional Neural Network (CNN) algorithm with the ResNet-50 architecture with 3 types of optimizers such as Stochastic Gradient Descent (SGD), Adam, and RMSprop. The dataset used for training first goes through 2 stages of preprocessing, namely cropping and resizing. The results of the study show that the SGD optimizer can outperform the Adam and RMSprop optimizers with 97.83% accuracy, 97% precision, 97% recall, and 97% f1 score with batch size 32, learning rate 0.01, and epoch 50.

References

A. Suprayogi, “Video: Polisi Gulung Komplotan Pengoplos Daging Sapi di Lampung,†Liputan6.com, Apr. 22, 2021. https://www.liputan6.com/regional/read/4539334/video-polisi-gulung-komplotan-pengoplos-daging-sapi-di-lampung.

A. N. A. joko Suceno, “Suami Istri Pengoplos Daging Sapi dan Celeng Ditangkap,†republika.co.id, Jun. 30, 2020. https://www.republika.co.id/berita/qcqohc384/suami-istri-pengoplos-daging-sapi-dan-celeng-ditangkap.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A Guide to Convolutional Neural Networks for Computer Vision,†Synth. Lect. Comput. Vis., vol. 8, no. 1, pp. 1–207, 2018, doi: 10.2200/s00822ed1v01y201712cov015.

S. Ayu Aisah, A. Hanifa Setyaningrum, L. Kesuma Wardhani, and R. Bahaweres, “Identifying Pork Raw-Meat Based on Color and Texture Extraction Using Support Vector Machine,†2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM 2020, no. c, 2020, doi: 10.1109/CITSM50537.2020.9268892.

U. Delfana et al., “Klasifikasi Citra Daging Berdasarkan Fitur Warna dan Tekstur Berbasis Android Putra Prima Arhandi,†pp. 223–226, 2020.

J. Jasril and S. Sanjaya, “Learning Vector Quantization 3 (LVQ3) and Spatial Fuzzy C-Means (SFCM) for Beef and Pork Image Classification,†Indones. J. Artif. Intell. Data Min., vol. 1, no. 2, p. 60, 2018, doi: 10.24014/ijaidm.v1i2.5024.

O. D. Nurhayati and I. P. Hastuti, “Metode Moment Invariant Geometrik untuk Menganalisis Jenis Daging Babi dan Daging Sapi,†J. Sist. Inf. Bisnis, vol. 8, no. 2, p. 67, 2018, doi: 10.21456/vol8iss2pp67-72.

D. P. Kusumaningrum, U. Sudibyo, E. H. Rachmawanto, and C. A. Sari, “( Lvq ) Dalam Klasifikasi Citra Warna Pada Daging Sapi Dan Babi,†no. 1, pp. 978–979, 2018.

Tariq M. arif, Synthesis Lectures on Mechanical Engineering. 2020.

M. Farid Naufal, “Perbandingan, Analisis Svm, Algoritma Untuk, dan CNN,†J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, pp. 311–318, 2021, doi: 10.25126/jtiik.202184553.

Y. Amelia, P. Eosina, and F. A. Setiawan, “Perbandingan Metode Deep Learning Dan Machine Learning Untuk Klasifikasi (Ujicoba Pada Data Penyakit Kanker Payudara),†Inova-Tif, vol. 1, no. 2, p. 109, 2018, doi: 10.32832/inova-tif.v1i2.5449.

M. Sewak, S. K. Sahay, and H. Rathore, “Comparison of deep learning and the classical machine learning algorithm for the malware detection,†Proc. - 2018 IEEE/ACIS 19th Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distributed Comput. SNPD 2018, pp. 293–296, 2018, doi: 10.1109/SNPD.2018.8441123.

E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,†Geomatika, vol. 24, no. 2, p. 61, 2018, doi: 10.24895/jig.2018.24-2.810.

A. Fitrianto and B. Sartono, “International journal of science, engineering, and information technology Image Classification of Beef and Pork Using Convolutional Neural Network in Keras Framework,†vol. 05, no. 02, pp. 5–8, 2021, [Online]. Available: https://journal.trunojoyo.ac.id/ijseit.

Y. Rizki, R. Medikawati Taufiq, H. Mukhtar, and D. Putri, “Klasifikasi Pola Kain Tenun Melayu Menggunakan Faster R-CNN,†IT J. Res. Dev., vol. 5, no. 2, pp. 215–225, 2021, doi: 10.25299/itjrd.2021.vol5(2).5831.

M. Afif, A. Fawwaz, K. N. Ramadhani, and F. Sthevanie, “Klasifikasi Ras pada Kucing menggunakan Algoritma Convolutional Neural Network(CNN),†J. Tugas Akhir Fak. Inform., vol. 8, no. 1, pp. 715–730, 2020.

O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,†Int. J. Comput. Vis., 2015, doi: 10.1007/s11263-015-0816-y.

N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,†J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.

Kade Bramasta Vikana Putra, I Putu Agung Bayupati, and Dewa Made Sri Arsa, “Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 656–662, 2021, doi: 10.29207/resti.v5i4.3247.

P. Winardi and E. Setyati, “Identifikasi Jenis Daging Menggunakan Algoritma Convolution Neural Network,†vol. 03, no. November, pp. 82–88, 2021.

N. K. C. Pratiwi, N. Ibrahim, Y. N. Fu’adah, and S. Rizal, “Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning,†ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 2, p. 306, 2021, doi: 10.26760/elkomika.v9i2.306.

A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, R. Ridlo, and A. Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,†vol. 9, no. 2, pp. 388–395, 2022, doi: 10.30865/jurikom.v9i1.3846.

Additional Files

Published

2022-06-30

How to Cite

Efendi, D., Jasril, J., Sanjaya, S., Syafria, F., & Budianita, E. (2022). Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi. JURNAL RISET KOMPUTER (JURIKOM), 9(3), 607–614. https://doi.org/10.30865/jurikom.v9i3.4176

Issue

Section

Articles