Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan Ekstraksi Ciri dan Convolutional Neural Network

Authors

DOI:

https://doi.org/10.30865/jurikom.v9i3.4175

Keywords:

CLAHE, Classification, CNN, Deep Learning, Meat

Abstract

Cases of mixing beef and pork are still happening today. The increasing demand for beef causes many traders to mix meat to gain more profit. Distinguishing beef and pork can be done by sight and smell, but still has weaknesses. This study uses Deep Learning method for image classification with Convolutional Neural Network architecture EfficientNet-B0. The amount of data is 3,000 images which are divided into 3 classes, beef, pork, and mixed meat. This study uses original image data and image data of Contrast Limited Adaptive Histogram Equalization. The data is divided by the ratio of training data and test data of 80:20. The results of testing the model with the confusion matrix show the highest classification performance with 95.17% accuracy, 92.72% precision, 95.5% recall, and 94.09% f1 score, in the original image data with the use of neurons in the first dense amounting to 256, 32 batch size, 0.01 learning rate, and Adam's optimizer

References

Jasril and S. Sanjaya, “Learning Vector Quantization 3 (LVQ3) and Spatial Fuzzy C-Means (SFCM) for Beef and Pork Image Classification,†Indones. J. Artif. Intell. Data Min., vol. 1, no. 2, pp. 60–65, 2018, doi: 10.24014/ijaidm.v1i2.5024.

D. A. Putra, “Kebutuhan Daging Sapi Terus Meningkat hingga Mei 2021, Stok Aman?,†Liputan6, 2021. https://www.liputan6.com/bisnis/read/4518449/kebutuhan-daging-sapi-terus-meningkat-hingga-mei-2021-stok-aman (accessed Oct. 28, 2021).

I. Maulidya, “Polisi Tangkap Pengoplos Daging Sapi di Tangerang,†Okezone, 2020. https://megapolitan.okezone.com/read/2020/05/18/338/2215991/polisi-tangkap-pengoplos-daging-sapi-di-tangerang (accessed Oct. 28, 2021).

W. Pradana, “Terbongkarnya Aksi Licik Pasutri di Bandung Pengoplos Daging Celeng,†detikNews, 2020. https://news.detik.com/berita-jawa-barat/d-5075084/terbongkarnya-aksi-licik-pasutri-di-bandung-pengoplos-daging-celeng/1 (accessed Oct. 28, 2021).

J. Chairunnisa et al., “Pork and Beef Features Extractions,†in 2018 International Seminar on Application for Technology of Information and Communication (iSemantic), 2018, pp. 295–298, doi: 10.1109/ISEMANTIC.2018.8549765.

A. M. Priyatno, F. M. Putra, P. Cholidhazia, and L. Ningsih, “Combination of Extraction Features Based on Texture and Colour Feature for Beef and Pork Classification,†J. Phys. Conf. Ser., vol. 1563, no. 1, pp. 1–7, 2020, doi: 10.1088/1742-6596/1563/1/012007.

I. Chairul, E. W. Hidayat, and N. I. Kurniati, “Klasifikasi Citra Daging Menggunakan Metode Jaringan Saraf Tiruan dan Ekstraksi Ciri Tekstur Dengan Metode Gray Level Co-occurrence Matrix,†J. Tek. Inform., vol. 2, no. 1, pp. 1–8, 2021.

U. Sudibyo, D. P. Kusumaningrum, E. H. Rachmawanto, and C. A. Sari, “Optimasi Algoritma Learning Vector Quantization (LVQ) Dalam Pengklasifikasian Citra Daging Sapi dan Daging Babi Berbasis GLCM dan HSV,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 1–10, 2018, doi: 10.24176/simet.v9i1.1943.

Y. Lai, “A Comparison of Traditional Machine Learning and Deep Learning in Image Recognition,†J. Phys. Conf. Ser., vol. 1314, no. 1, pp. 1–8, 2019, doi: 10.1088/1742-6596/1314/1/012148.

M. F. Naufal, “Analisis Perbandingan Algoritma SVM, KNN, dan CNN Untuk Klasifikasi Citra Cuaca,†J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, pp. 311–318, 2021, doi: 10.25126/jtiik.202184553.

M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,†in 36th International Conference on Machine Learning, ICML 2019, 2019, pp. 10691–10700.

N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,†J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020.

A. M. Pour, H. Seyedarabi, S. H. A. Jahromi, and A. Javadzadeh, “Automatic Detection and Monitoring of Diabetic Retinopathy Using Efficient Convolutional Neural Networks and Contrast Limited Adaptive Histogram Equalization,†IEEE Access, vol. 8, pp. 136668–136673, 2020, doi: 10.1109/ACCESS.2020.3005044.

T. Yu and H. Zhu, “Hyper-Parameter Optimization: A Review of Algorithms and Applications,†pp. 1–56, 2020, [Online]. Available: http://arxiv.org/abs/2003.05689.

J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization,†J. Electron. Sci. Technol., vol. 17, no. 1, pp. 26–40, 2019, doi: 10.11989/JEST.1674-862X.80904120.

S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, A Guide to Convolutional Neural Networks for Computer Vision, vol. 8, no. 1. Morgan & Claypool, 2018.

Salsabila, A. Fitrianto, and B. Sartono, “Image Classification Modelling of Beef and Pork Using Convolutional Neural Network,†Int. J. Sci. Basic Appl. Res., vol. 57, no. 2, pp. 26–38, 2021, [Online]. Available: http://gssrr.org/index.php?journal=JournalOfBasicAndApplied.

Additional Files

Published

2022-06-30

How to Cite

Alhafis, G. Y., Jasril, J., Sanjaya, S., Syafria, F., & Budianita, E. (2022). Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan Ekstraksi Ciri dan Convolutional Neural Network. JURNAL RISET KOMPUTER (JURIKOM), 9(3), 653–660. https://doi.org/10.30865/jurikom.v9i3.4175

Issue

Section

Articles