Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk

Authors

  • Arief Herdiansah Universitas Muhammadiyah Tangerang, Tangerang
  • Rohmat Indra Borman Universitas Teknokrat Indonesia, Bandarlampung
  • Desi Nurnaningsih Universitas Muhammadiyah Tangerang, Tangerang
  • Alfry Aristo J Sinlae Universitas Katolik Widya Mandira, Kupang
  • Rosyid Ridlo Al Hakim Universitas Global Jakarta, Depok

DOI:

https://doi.org/10.30865/jurikom.v9i2.4066

Keywords:

Image Classification, Backpropagation Neural Network, Extraction Of Shape Features, Metrics, Eccentricity

Abstract

Since ancient times until now herbal plants have been used for treatment and have been applied in the world of health to this day. All parts of the plant can be used as medicine, one of which is the leaves. However, there are still many people who are not familiar with the medicinal leaves. This is because the leaves at first glance look almost the same, making it difficult to tell them apart. Actually, if you look closely, the leaves have characteristics that can be distinguished from one leaf to another. The purpose of this study is to classify images of herbal leaf species using the Backpropagation Neural Network (BNN) algorithm with shape feature extraction utilizing metric and eccentricity parameters. BNN is a type of supervised learning algorithm that consists of several layers and uses an error output as a modifier of the weight value backwards. In this study, the extraction of shape features that become input for the BNN algorithm will go through morphological operations to improve the segmentation results so that the classification results are more optimal. The test results show an accuracy of 88.75%, this shows the developed model can classify herbal leaves well

References

F. Bahalwan and N. Y. Mulyawati, “Jenis Tumbuhan Herbal dan Cara Pengolahannya (Studi Kasus di Negeri Luhutuban Kecamatan Kepulauan Manipa Kabupaten Seram Bagian Barat),†J. Biol. Sci. Educ., vol. 7, no. 2, pp. 162–177, 2018.

A. R. Oktaviani et al., “Pengetahuan dan Pemilihan Obat Tradisional Oleh Ibu-Ibu di Surabaya,†J. Farm. Komunitas, vol. 8, no. 1, pp. 1–8, 2021.

E. S. Manzano, J. A. G. Cardenas, and F. M. Agugliaro, “Worldwide Research Trends on Medicinal Plants,†Int. J. Enviromental Res. Public Heal., vol. 17, no. 3376, pp. 1–20, 2020.

R. I. Borman, F. Rossi, Y. Jusman, A. A. A. Rahni, S. D. Putra, and A. Herdiansah, “Identification of Herbal Leaf Types Based on Their Image Using First Order Feature Extraction and Multiclass SVM Algorithm,†in 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS) Identification, 2021, pp. 12–17.

R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,†in ICOMITEE 2021, 2021, pp. 46–50.

S. Ratna, “Pengolahan Citra Digital dan Histogram Dengan Phyton dan Text Editor Phycharm,†Technologia, vol. 11, no. 3, pp. 181–186, 2020.

N. Wiliani, A. Sani, and A. T. Andyanto, “Klasifikasi Kerusakan Dengan Jaringan Syaraf Backpropagation pada Permukaan Solar Panel,†J. Ilmu Pengetah. dan Teknol. Komput., vol. 5, no. 1, pp. 89–94, 2019.

S. H. Hasanah and S. M. Permatasari, “Backpropagation Artificial Neural Network Classification Method in Statistics Students of Open University,†BAREKENG J. Ilmu Mat. dan Terap., vol. 14, no. 2, pp. 243–252, 2020.

H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “Classification of Vehicle Types Using Backpropagation Neural Networks With Metric and Ecentricity Parameters,†J. Ris. Inform., vol. 4, no. 1, pp. 65–70, 2021.

I. P. B. D. Purwanta, C. K. Adi, and N. P. N. P. Dewi, “Backpropagation Neural Network for Book Classification Using the Image Cover,†Int. J. Appl. Sci. Smart Technol., vol. 2, no. 2, pp. 179–196, 2020.

B. Imran and M. M. Efendi, “The Implementation of Extraction Feature Using GLCM and Back-Propagation Artificial Neural Network to Clasify Lombok Songket Woven Cloth,†J. TECHNO Nusa Mandiri, vol. 17, no. 2, pp. 131–136, 2020.

N. S. B. Kusrorong, D. R. Sina, and N. D. Rumlaklak, “Kajian Machine Learning Dengan Komparasi Klasifikasi Prediksi Dataset Tenaga Kerja Non-Aktif,†J-ICON, vol. 7, no. 1, pp. 37–49, 2019.

M. Wati, Haviluddin, N. Puspitasari, E. Budiman, and R. Rahim, “First-order Feature Extraction Methods for Image Texture and Melanoma Skin Cancer Detection,†J. Phys. Conf. Ser., vol. 1230, no. 1, 2019.

P. Prasetyawan, I. Ahmad, R. I. Borman, A. Ardiansyah, Y. A. Pahlevi, and D. E. Kurniawan, “Classification of the Period Undergraduate Study Using Back-propagation Neural Network,†in Proceedings of the 2018 International Conference on Applied Engineering, ICAE 2018, 2018.

S. Setti and A. Wanto, “Analysis of Backpropagation Algorithm in Predicting the Most Number of Internet Users in the World,†JOIN (Jurnal Online Inform., vol. 3, no. 2, pp. 110–115, 2019.

R. I. Borman and B. Priyopradono, “Implementasi Penerjemah Bahasa Isyarat Pada Bahasa Isyarat Indonesia (BISINDO) Dengan Metode Principal Component Analysis (PCA),†J. Inform. J. Pengemb. IT, vol. 03, no. 1, pp. 103–108, 2018.

D. Nurnaningsih, D. Alamsyah, A. Herdiansah, and A. A. J. Sinlae, “Identifikasi Citra Tanaman Obat Jenis Rimpang dengan Euclidean Distance Berdasarkan Ciri Bentuk dan Tekstur,†Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 171–178, 2021.

Additional Files

Published

2022-04-29

How to Cite

Herdiansah, A., Borman, R. I., Nurnaningsih, D., Sinlae, A. A. J., & Al Hakim, R. R. (2022). Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk. JURNAL RISET KOMPUTER (JURIKOM), 9(2), 388–395. https://doi.org/10.30865/jurikom.v9i2.4066

Issue

Section

Articles