Perbandingan Metode K-NN, Naïve Bayes, Decision Tree untuk Analisis Sentimen Tweet Twitter Terkait Opini Terhadap PT PAL Indonesia

Authors

  • Franly Salmon Pattiiha Universitas Kristen Satya Wacana, Salatiga
  • Hendry Hendry Universitas Kristen Satya Wacana, Salatiga

DOI:

https://doi.org/10.30865/jurikom.v9i2.4016

Keywords:

Twitter, Sentiment Analysis, Accuracy, K-NN, Naïve Bayes, Decision Tree

Abstract

PT PAL Indonesia is one of the state-owned enterprises engaged in the shipbuilding industry which has business advantages in shipbuilding and shipbuilding capabilities. Being a fairly large company, PT PAL gets opinions from the public regarding the performance and services provided. Therefore, a sentiment analysis was carried out on public opinion on Twitter social media using data that had been collected into a dataset and processed using Rapidminer tools. This study uses the Naïve Bayes, K-NN and Decision Tree methods to make comparisons by looking at the level of accuracy of the three methods used. The results of the study show that the Naïve Bayes method has an accuracy rate of 84.08% with class precision for pred. positive is 83.65%, pred. Neutral is 97.06%, pred. negative 100%, K-NN method is 83.38% with class precision for pred. positive is 83.05%, pred. Neutral is 96.43%, pred. negative 0.0% and the Decision Tree method is 81.09% with class precision for pred. positive is 81.09%, pred. Neutral is 0.0%, pred. negative 0.0%. The results of this study can show that the Naïve Bayes method has a higher accuracy rate than other methods used with an accuracy rate of 84.08%

References

I. F. Ramadhy and Y. Sibaroni, “Analisis Trending Topik Twitter dengan Fitur Ekspansi FastText Menggunakan Metode Logistic Regression,†J. Ris. Komputer), vol. 9, no. 1, pp. 2407–389, 2022.

F. Anugratami, M. Christin, and B. Primadani, “Pengaruh Pengunaan Media Sosial Twitter Terhadap Motivasi Followers Pada Akun @Merryriana the Effect of Social Media Twitter Usage on Followers’ Motivation in @Merryriana Account,†vol. 2, no. 2, pp. 2256–2261, 2014.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,†Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020.

B. A. B. Ii and L. Teori, “BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka 2.1.1. Pengertian Data Mining,†pp. 6–18, 2019.

N. Y. Septian, “Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro,†J. Semant. 2013, pp. 1–11, 2009.

R. Puspita and A. Widodo, “Perbandingan Metode KNN, Decision Tree, dan Naïve Bayes Terhadap Analisis Sentimen Pengguna Layanan BPJS,†J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 646, 2021.

N. T. Romadloni, I. Santoso, and S. Budilaksono, “Perbandingan Metode Naive Bayes , Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl,†J. IKRA-ITH Inform., vol. 3, no. 2, pp. 1–9, 2019.

R. Rosdiana, T. Eddy, S. Zawiyah, and N. Y. U. Muhammad, “Analisis Sentimen pada Twitter terhadap Pelayanan Pemerintah Kota Makassar,†Proceeding SNTEI, no. September, pp. 87–93, 2019.

T. N. P. Dicki Pajri, Yuyun Umaidah, “Implementation of K-Nearest Neighbor ( K-NN ) Algorithm For Public Sentiment Analysis of Online Learning,†Tek. Inform. dan Sist. Inf., vol. 15, no. 2, pp. 121–130, 2021.

D. Noviana, Y. Susanti, and I. Susanto, “Analisis Rekomendasi Penerima Beasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Algoritma C4.5,†Semin. Nas. Penelit. Pendidik. Mat. 2019 UMT, pp. 79–87, 2019.

A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor,†JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, p. 1, 2018.

M. S. Mustafa and I. W. Simpen, “Implementasi Algoritma K-Nearest Neighbor ( KNN ) Untuk Memprediksi Pasien Terkena Penyakit Diabetes Pada Puskesmas Manyampa Kabupaten Bulukumba,†Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. VIII, no. 1, pp. 1–10, 2019.

A. Rohman, “Model Algoritma K-Nearest Neighbor (K-Nn) Untuk Prediksi Kelulusan Mahasiswa,†Neo Tek., vol. 1, no. 1, 2015.

F. Nurhuda, S. Widya Sihwi, and A. Doewes, “Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier,†J. Teknol. Inf. ITSmart, vol. 2, no. 2, p. 35, 2016.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,†J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.

E. M. Sipayung, H. Maharani, and I. Zefanya, “Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier,†J. Sist. Inf., vol. 8, no. 1, pp. 958–965, 2016.

D. N. Batubara et al., “Analisis Prediksi Keterlambatan Pembayaran Listrik Menggunakan Komparasi Metode Klasifikasi Decision Tree dan Support Vector Machine,†vol. 9, no. 1, 2022.

E. P. Cynthia and E. Ismanto, “Metode Decision Tree Algoritma C.45 Dalam Mengklasifikasi Data Penjualan Bisnis Gerai Makanan Cepat Saji,†Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 3, no. July, p. 1, 2018.

Additional Files

Published

2022-04-29

How to Cite

Pattiiha, F. S., & Hendry, H. (2022). Perbandingan Metode K-NN, Naïve Bayes, Decision Tree untuk Analisis Sentimen Tweet Twitter Terkait Opini Terhadap PT PAL Indonesia. JURNAL RISET KOMPUTER (JURIKOM), 9(2), 506–514. https://doi.org/10.30865/jurikom.v9i2.4016

Issue

Section

Articles